返回介绍

solution / 0300-0399 / 0305.Number of Islands II / README_EN

发布于 2024-06-17 01:04:02 字数 11016 浏览 0 评论 0 收藏 0

305. Number of Islands II

中文文档

Description

You are given an empty 2D binary grid grid of size m x n. The grid represents a map where 0's represent water and 1's represent land. Initially, all the cells of grid are water cells (i.e., all the cells are 0's).

We may perform an add land operation which turns the water at position into a land. You are given an array positions where positions[i] = [ri, ci] is the position (ri, ci) at which we should operate the ith operation.

Return _an array of integers_ answer _where_ answer[i] _is the number of islands after turning the cell_ (ri, ci) _into a land_.

An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

 

Example 1:

Input: m = 3, n = 3, positions = [[0,0],[0,1],[1,2],[2,1]]
Output: [1,1,2,3]
Explanation:
Initially, the 2d grid is filled with water.
- Operation #1: addLand(0, 0) turns the water at grid[0][0] into a land. We have 1 island.
- Operation #2: addLand(0, 1) turns the water at grid[0][1] into a land. We still have 1 island.
- Operation #3: addLand(1, 2) turns the water at grid[1][2] into a land. We have 2 islands.
- Operation #4: addLand(2, 1) turns the water at grid[2][1] into a land. We have 3 islands.

Example 2:

Input: m = 1, n = 1, positions = [[0,0]]
Output: [1]

 

Constraints:

  • 1 <= m, n, positions.length <= 104
  • 1 <= m * n <= 104
  • positions[i].length == 2
  • 0 <= ri < m
  • 0 <= ci < n

 

Follow up: Could you solve it in time complexity O(k log(mn)), where k == positions.length?

Solutions

Solution 1: Union-Find

We use a two-dimensional array $grid$ to represent a map, where $0$ and $1$ represent water and land respectively. Initially, all cells in $grid$ are water cells (i.e., all cells are $0$), and we use a variable $cnt$ to record the number of islands. The connectivity between islands can be maintained by a union-find set $uf$.

Next, we traverse each position $(i, j)$ in the array $positions$. If $grid[i][j]$ is $1$, it means that this position is already land, and we directly add $cnt$ to the answer; otherwise, we change the value of $grid[i][j]$ to $1$, and increase the value of $cnt$ by $1$. Then, we traverse the four directions of up, down, left, and right of this position. If a certain direction is $1$, and this position does not belong to the same connected component as $(i, j)$, then we merge this position with $(i, j)$, and decrease the value of $cnt$ by $1$. After traversing the four directions of up, down, left, and right of this position, we add $cnt$ to the answer.

The time complexity is $O(k \times \alpha(m \times n))$ or $O(k \times \log(m \times n))$, where $k$ is the length of $positions$, and $\alpha$ is the inverse function of the Ackermann function. In this problem, $\alpha(m \times n)$ can be considered as a very small constant.

class UnionFind:
  def __init__(self, n: int):
    self.p = list(range(n))
    self.size = [1] * n

  def find(self, x: int):
    if self.p[x] != x:
      self.p[x] = self.find(self.p[x])
    return self.p[x]

  def union(self, a: int, b: int) -> bool:
    pa, pb = self.find(a - 1), self.find(b - 1)
    if pa == pb:
      return False
    if self.size[pa] > self.size[pb]:
      self.p[pb] = pa
      self.size[pa] += self.size[pb]
    else:
      self.p[pa] = pb
      self.size[pb] += self.size[pa]
    return True


class Solution:
  def numIslands2(self, m: int, n: int, positions: List[List[int]]) -> List[int]:
    uf = UnionFind(m * n)
    grid = [[0] * n for _ in range(m)]
    ans = []
    dirs = (-1, 0, 1, 0, -1)
    cnt = 0
    for i, j in positions:
      if grid[i][j]:
        ans.append(cnt)
        continue
      grid[i][j] = 1
      cnt += 1
      for a, b in pairwise(dirs):
        x, y = i + a, j + b
        if (
          0 <= x < m
          and 0 <= y < n
          and grid[x][y]
          and uf.union(i * n + j, x * n + y)
        ):
          cnt -= 1
      ans.append(cnt)
    return ans
class UnionFind {
  private final int[] p;
  private final int[] size;

  public UnionFind(int n) {
    p = new int[n];
    size = new int[n];
    for (int i = 0; i < n; ++i) {
      p[i] = i;
      size[i] = 1;
    }
  }

  public int find(int x) {
    if (p[x] != x) {
      p[x] = find(p[x]);
    }
    return p[x];
  }

  public boolean union(int a, int b) {
    int pa = find(a), pb = find(b);
    if (pa == pb) {
      return false;
    }
    if (size[pa] > size[pb]) {
      p[pb] = pa;
      size[pa] += size[pb];
    } else {
      p[pa] = pb;
      size[pb] += size[pa];
    }
    return true;
  }
}

class Solution {
  public List<Integer> numIslands2(int m, int n, int[][] positions) {
    int[][] grid = new int[m][n];
    UnionFind uf = new UnionFind(m * n);
    int[] dirs = {-1, 0, 1, 0, -1};
    int cnt = 0;
    List<Integer> ans = new ArrayList<>();
    for (var p : positions) {
      int i = p[0], j = p[1];
      if (grid[i][j] == 1) {
        ans.add(cnt);
        continue;
      }
      grid[i][j] = 1;
      ++cnt;
      for (int k = 0; k < 4; ++k) {
        int x = i + dirs[k], y = j + dirs[k + 1];
        if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1
          && uf.union(i * n + j, x * n + y)) {
          --cnt;
        }
      }
      ans.add(cnt);
    }
    return ans;
  }
}
class UnionFind {
public:
  UnionFind(int n) {
    p = vector<int>(n);
    size = vector<int>(n, 1);
    iota(p.begin(), p.end(), 0);
  }

  bool unite(int a, int b) {
    int pa = find(a), pb = find(b);
    if (pa == pb) {
      return false;
    }
    if (size[pa] > size[pb]) {
      p[pb] = pa;
      size[pa] += size[pb];
    } else {
      p[pa] = pb;
      size[pb] += size[pa];
    }
    return true;
  }

  int find(int x) {
    if (p[x] != x) {
      p[x] = find(p[x]);
    }
    return p[x];
  }

private:
  vector<int> p, size;
};

class Solution {
public:
  vector<int> numIslands2(int m, int n, vector<vector<int>>& positions) {
    int grid[m][n];
    memset(grid, 0, sizeof(grid));
    UnionFind uf(m * n);
    int dirs[5] = {-1, 0, 1, 0, -1};
    int cnt = 0;
    vector<int> ans;
    for (auto& p : positions) {
      int i = p[0], j = p[1];
      if (grid[i][j]) {
        ans.push_back(cnt);
        continue;
      }
      grid[i][j] = 1;
      ++cnt;
      for (int k = 0; k < 4; ++k) {
        int x = i + dirs[k], y = j + dirs[k + 1];
        if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] && uf.unite(i * n + j, x * n + y)) {
          --cnt;
        }
      }
      ans.push_back(cnt);
    }
    return ans;
  }
};
type unionFind struct {
  p, size []int
}

func newUnionFind(n int) *unionFind {
  p := make([]int, n)
  size := make([]int, n)
  for i := range p {
    p[i] = i
    size[i] = 1
  }
  return &unionFind{p, size}
}

func (uf *unionFind) find(x int) int {
  if uf.p[x] != x {
    uf.p[x] = uf.find(uf.p[x])
  }
  return uf.p[x]
}

func (uf *unionFind) union(a, b int) bool {
  pa, pb := uf.find(a), uf.find(b)
  if pa == pb {
    return false
  }
  if uf.size[pa] > uf.size[pb] {
    uf.p[pb] = pa
    uf.size[pa] += uf.size[pb]
  } else {
    uf.p[pa] = pb
    uf.size[pb] += uf.size[pa]
  }
  return true
}

func numIslands2(m int, n int, positions [][]int) (ans []int) {
  uf := newUnionFind(m * n)
  grid := make([][]int, m)
  for i := range grid {
    grid[i] = make([]int, n)
  }
  dirs := [5]int{-1, 0, 1, 0, -1}
  cnt := 0
  for _, p := range positions {
    i, j := p[0], p[1]
    if grid[i][j] == 1 {
      ans = append(ans, cnt)
      continue
    }
    grid[i][j] = 1
    cnt++
    for k := 0; k < 4; k++ {
      x, y := i+dirs[k], j+dirs[k+1]
      if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] == 1 && uf.union(i*n+j, x*n+y) {
        cnt--
      }
    }
    ans = append(ans, cnt)
  }
  return
}
class UnionFind {
  p: number[];
  size: number[];
  constructor(n: number) {
    this.p = Array(n)
      .fill(0)
      .map((_, i) => i);
    this.size = Array(n).fill(1);
  }

  find(x: number): number {
    if (this.p[x] !== x) {
      this.p[x] = this.find(this.p[x]);
    }
    return this.p[x];
  }

  union(a: number, b: number): boolean {
    const [pa, pb] = [this.find(a), this.find(b)];
    if (pa === pb) {
      return false;
    }
    if (this.size[pa] > this.size[pb]) {
      this.p[pb] = pa;
      this.size[pa] += this.size[pb];
    } else {
      this.p[pa] = pb;
      this.size[pb] += this.size[pa];
    }
    return true;
  }
}

function numIslands2(m: number, n: number, positions: number[][]): number[] {
  const grid: number[][] = Array.from({ length: m }, () => Array(n).fill(0));
  const uf = new UnionFind(m * n);
  const ans: number[] = [];
  const dirs: number[] = [-1, 0, 1, 0, -1];
  let cnt = 0;
  for (const [i, j] of positions) {
    if (grid[i][j]) {
      ans.push(cnt);
      continue;
    }
    grid[i][j] = 1;
    ++cnt;
    for (let k = 0; k < 4; ++k) {
      const [x, y] = [i + dirs[k], j + dirs[k + 1]];
      if (x < 0 || x >= m || y < 0 || y >= n || !grid[x][y]) {
        continue;
      }
      if (uf.union(i * n + j, x * n + y)) {
        --cnt;
      }
    }
    ans.push(cnt);
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文