- 译者序
- 前言
- 第1章 问答环节
- 第2章 Python 如何运行程序
- 第3章 如何运行程序
- 第4章 介绍 Python 对象类型
- 第5章 数字
- 第6章 动态类型简介
- 第7章 字符串
- 第8章 列表与字典
- 第9章 元组、文件及其他
- 第10章 Python 语句简介
- 第11章 赋值、表达式和打印
- 第12章 if 测试和语法规则
- 第13章 while 和 for 循环
- 第14章 迭代器和解析,第一部分
- 第15章 文档
- 第16章 函数基础
- 第17章 作用域
- 第18章 参数
- 第19章 函数的高级话题
- 第20章 迭代和解析,第二部分
- 第21章 模块:宏伟蓝图
- 第22章 模块代码编写基础
- 第23章 模块包
- 第24章 高级模块话题
- 第25章 OOP:宏伟蓝图
- 第27章 更多实例
- 第28章 类代码编写细节
- 第29章 运算符重载
- 第30章 类的设计
- 第31章 类的高级主题
- 第32章 异常基础
- 第34章 异常对象
- 第35章 异常的设计
- 第36章 Unicode 和字节字符串
- 字符串基础知识
- Python 的字符串类型
- 文本和二进制文件
- Python 3.0 中的字符串应用
- 转换
- 编码 Unicode 字符串
- 编码非ASCII文本
- 编码和解码非ASCII文本
- 其他 Unicode 编码技术
- 转换编码
- 在 Python 2.6 中编码 Unicode 字符串
- 源文件字符集编码声明
- 使用 Python 3.0 Bytes 对象
- 序列操作
- 创建 bytes 对象的其他方式
- 混合字符串类型
- 使用 Python 3.0(和 Python 2.6)bytearray 对象
- 使用文本文件和二进制文件
- Python 3.0 中的文本和二进制模式
- 类型和内容错误匹配
- 使用 Unicode 文件
- 在 Python 3.0 中处理 BOM
- Python 2.6 中的 Unicode 文件
- Python 3.0 中其他字符串工具的变化
- Struct二进制数据模块
- pickle对象序列化模块
- XML解析工具
- 本章小结
- 本章习题
- 习题解答
- 第37章 管理属性
- 第38章 装饰器
- 第39章 元类
- 附录A 安装和配置
- 附录B 各部分练习题的解答
- 作者介绍
- 封面介绍
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
类装饰器和元类
函数装饰器如此有用,以至于Python 2.6和Python 3.0都扩展了这一模式,允许装饰器应用于类和函数。简而言之,类装饰器类似于函数装饰器,但是,它们在一条class语句的末尾运行,并且把一个类名重新绑定到一个可调用对象。同样,它们可以用来管理类(在类创建之后),或者当随后创建实例的时候插入一个包装逻辑层来管理实例。代码结构如下:
被映射为下列相当代码:
类装饰器也可以扩展类自身,或者返回一个拦截了随后的实例构建调用的对象。例如,在本章前面的“用类方法统计每个类的实例”小节的示例中,我们使用这个钩子来自动地扩展了带有实例计数器和任何其他所需数据的类:
元类是一种类似的基于类的高级工具,其用途往往与类装饰器有所重合。它们提供了一种可选的模式,会把一个类对象的创建导向到顶级type类的一个子类,在一条class语句的最后:
在Python 2.6中,效果是相同的,但是编码是不同的——在类头部中使用一个类属性而不是一个关键字参数:
元类通常重新定义type类的__new__或__init__方法,以实现对一个新的类对象的创建和初始化的控制。直接效果就像类装饰器一样,是定义了在类创建时自动运行的代码。两种方法都可以用来扩展一个类或返回一个任意的对象来替代它——几乎是拥有无限的、基于类的可能性的一种协议。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论