返回介绍

solution / 1400-1499 / 1409.Queries on a Permutation With Key / README

发布于 2024-06-17 01:03:19 字数 8412 浏览 0 评论 0 收藏 0

1409. 查询带键的排列

English Version

题目描述

给定一个正整数数组 queries ,其取值范围在 1m 之间。 请你根据以下规则按顺序处理所有 queries[i](从 i=0i=queries.length-1):

  • 首先,你有一个排列 P=[1,2,3,...,m]
  • 对于当前的 i ,找到 queries[i] 在排列 P 中的位置(从 0 开始索引),然后将它移到排列 P 的开头(即下标为 0 处)。注意, queries[i] 的查询结果是 queries[i]P 中移动前的位置。

返回一个数组,包含从给定  queries 中查询到的结果。

 

示例 1:

输入:queries = [3,1,2,1], m = 5
输出:[2,1,2,1] 
解释:处理 queries 的过程如下:
对于 i=0: queries[i]=3, P=[1,2,3,4,5], 3 在 P 中的位置是 2,然后我们把 3 移动到 P 的开头,得到 P=[3,1,2,4,5] 。
对于 i=1: queries[i]=1, P=[3,1,2,4,5], 1 在 P 中的位置是 1,然后我们把 1 移动到 P 的开头,得到 P=[1,3,2,4,5] 。 
对于 i=2: queries[i]=2, P=[1,3,2,4,5], 2 在 P 中的位置是 2,然后我们把 2 移动到 P 的开头,得到 P=[2,1,3,4,5] 。
对于 i=3: queries[i]=1, P=[2,1,3,4,5], 1 在 P 中的位置是 1,然后我们把 1 移动到 P 的开头,得到 P=[1,2,3,4,5] 。 
因此,包含结果的数组为 [2,1,2,1] 。  

示例 2:

输入:queries = [4,1,2,2], m = 4
输出:[3,1,2,0]

示例 3:

输入:queries = [7,5,5,8,3], m = 8
输出:[6,5,0,7,5]

 

提示:

  • 1 <= m <= 10^3
  • 1 <= queries.length <= m
  • 1 <= queries[i] <= m

解法

方法一:模拟

题目数据规模不大,可以直接模拟。

方法一:树状数组

树状数组,也称作“二叉索引树”(Binary Indexed Tree)或 Fenwick 树。 它可以高效地实现如下两个操作:

  1. 单点更新 update(x, delta): 把序列 x 位置的数加上一个值 delta;
  2. 前缀和查询 query(x):查询序列 [1,...x] 区间的区间和,即位置 x 的前缀和。

这两个操作的时间复杂度均为 $O(\log n)$。

树状数组最基本的功能就是求比某点 x 小的点的个数(这里的比较是抽象的概念,可以是数的大小、坐标的大小、质量的大小等等)。

比如给定数组 a[5] = {2, 5, 3, 4, 1},求 b[i] = 位置 i 左边小于等于 a[i] 的数的个数。对于此例,b[5] = {0, 1, 1, 2, 0}

解决方案是直接遍历数组,每个位置先求出 query(a[i]),然后再修改树状数组 update(a[i], 1) 即可。当数的范围比较大时,需要进行离散化,即先进行去重并排序,然后对每个数字进行编号。

class Solution:
  def processQueries(self, queries: List[int], m: int) -> List[int]:
    p = list(range(1, m + 1))
    ans = []
    for v in queries:
      j = p.index(v)
      ans.append(j)
      p.pop(j)
      p.insert(0, v)
    return ans
class Solution {
  public int[] processQueries(int[] queries, int m) {
    List<Integer> p = new LinkedList<>();
    for (int i = 1; i <= m; ++i) {
      p.add(i);
    }
    int[] ans = new int[queries.length];
    int i = 0;
    for (int v : queries) {
      int j = p.indexOf(v);
      ans[i++] = j;
      p.remove(j);
      p.add(0, v);
    }
    return ans;
  }
}
class Solution {
public:
  vector<int> processQueries(vector<int>& queries, int m) {
    vector<int> p(m);
    iota(p.begin(), p.end(), 1);
    vector<int> ans;
    for (int v : queries) {
      int j = 0;
      for (int i = 0; i < m; ++i) {
        if (p[i] == v) {
          j = i;
          break;
        }
      }
      ans.push_back(j);
      p.erase(p.begin() + j);
      p.insert(p.begin(), v);
    }
    return ans;
  }
};
func processQueries(queries []int, m int) []int {
  p := make([]int, m)
  for i := range p {
    p[i] = i + 1
  }
  ans := []int{}
  for _, v := range queries {
    j := 0
    for i := range p {
      if p[i] == v {
        j = i
        break
      }
    }
    ans = append(ans, j)
    p = append(p[:j], p[j+1:]...)
    p = append([]int{v}, p...)
  }
  return ans
}

方法二

class BinaryIndexedTree:
  def __init__(self, n):
    self.n = n
    self.c = [0] * (n + 1)

  @staticmethod
  def lowbit(x):
    return x & -x

  def update(self, x, delta):
    while x <= self.n:
      self.c[x] += delta
      x += BinaryIndexedTree.lowbit(x)

  def query(self, x):
    s = 0
    while x > 0:
      s += self.c[x]
      x -= BinaryIndexedTree.lowbit(x)
    return s


class Solution:
  def processQueries(self, queries: List[int], m: int) -> List[int]:
    n = len(queries)
    pos = [0] * (m + 1)
    tree = BinaryIndexedTree(m + n)
    for i in range(1, m + 1):
      pos[i] = n + i
      tree.update(n + i, 1)

    ans = []
    for i, v in enumerate(queries):
      j = pos[v]
      tree.update(j, -1)
      ans.append(tree.query(j))
      pos[v] = n - i
      tree.update(n - i, 1)
    return ans
class BinaryIndexedTree {
  private int n;
  private int[] c;

  public BinaryIndexedTree(int n) {
    this.n = n;
    c = new int[n + 1];
  }

  public void update(int x, int delta) {
    while (x <= n) {
      c[x] += delta;
      x += lowbit(x);
    }
  }

  public int query(int x) {
    int s = 0;
    while (x > 0) {
      s += c[x];
      x -= lowbit(x);
    }
    return s;
  }

  public static int lowbit(int x) {
    return x & -x;
  }
}

class Solution {
  public int[] processQueries(int[] queries, int m) {
    int n = queries.length;
    BinaryIndexedTree tree = new BinaryIndexedTree(m + n);
    int[] pos = new int[m + 1];
    for (int i = 1; i <= m; ++i) {
      pos[i] = n + i;
      tree.update(n + i, 1);
    }
    int[] ans = new int[n];
    int k = 0;
    for (int i = 0; i < n; ++i) {
      int v = queries[i];
      int j = pos[v];
      tree.update(j, -1);
      ans[k++] = tree.query(j);
      pos[v] = n - i;
      tree.update(n - i, 1);
    }
    return ans;
  }
}
class BinaryIndexedTree {
public:
  int n;
  vector<int> c;

  BinaryIndexedTree(int _n)
    : n(_n)
    , c(_n + 1) {}

  void update(int x, int delta) {
    while (x <= n) {
      c[x] += delta;
      x += lowbit(x);
    }
  }

  int query(int x) {
    int s = 0;
    while (x > 0) {
      s += c[x];
      x -= lowbit(x);
    }
    return s;
  }

  int lowbit(int x) {
    return x & -x;
  }
};

class Solution {
public:
  vector<int> processQueries(vector<int>& queries, int m) {
    int n = queries.size();
    vector<int> pos(m + 1);
    BinaryIndexedTree* tree = new BinaryIndexedTree(m + n);
    for (int i = 1; i <= m; ++i) {
      pos[i] = n + i;
      tree->update(n + i, 1);
    }
    vector<int> ans;
    for (int i = 0; i < n; ++i) {
      int v = queries[i];
      int j = pos[v];
      tree->update(j, -1);
      ans.push_back(tree->query(j));
      pos[v] = n - i;
      tree->update(n - i, 1);
    }
    return ans;
  }
};
type BinaryIndexedTree struct {
  n int
  c []int
}

func newBinaryIndexedTree(n int) *BinaryIndexedTree {
  c := make([]int, n+1)
  return &BinaryIndexedTree{n, c}
}

func (this *BinaryIndexedTree) lowbit(x int) int {
  return x & -x
}

func (this *BinaryIndexedTree) update(x, delta int) {
  for x <= this.n {
    this.c[x] += delta
    x += this.lowbit(x)
  }
}

func (this *BinaryIndexedTree) query(x int) int {
  s := 0
  for x > 0 {
    s += this.c[x]
    x -= this.lowbit(x)
  }
  return s
}

func processQueries(queries []int, m int) []int {
  n := len(queries)
  pos := make([]int, m+1)
  tree := newBinaryIndexedTree(m + n)
  for i := 1; i <= m; i++ {
    pos[i] = n + i
    tree.update(n+i, 1)
  }
  ans := []int{}
  for i, v := range queries {
    j := pos[v]
    tree.update(j, -1)
    ans = append(ans, tree.query(j))
    pos[v] = n - i
    tree.update(n-i, 1)
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文