3ds Max 帮助
- Autodesk 3ds Max 2017 中的新功能
- 入门
- 基础知识
- 界面概述
- 启动文件和默认值
- 初始化文件
- 故障恢复系统
- 备份和存档场景
- 查看和导航 3D 空间
- 选择对象
- 移动、旋转和缩放对象
- 创建副本、实例和参考
- 精度和绘制辅助对象
- 对象属性
- 可用工具列表
- 多点触控设备
- 管理场景、文件和项目
- 拖放 MAX 场景文件
- 网格检查器
- 工作空间
- 状态集
- 容器
- 组和集合
- 文件处理命令
- 文件处理工具
- 图像文件格式
- 场景资源管理器
- 场景状态
- 图解视图
- 场景转换器
- 建模
- 创建几何体
- 曲面建模
- 在子对象层级工作
- 细分曲面
- “软选择”卷展栏
- 塌陷工具
- 石墨建模工具
- 可编辑网格曲面
- 可编辑多边形曲面
- 面片对象
- NURBS 建模
- NURBS 模型:“对象和子对象”
- NURBS 曲面
- NURBS 曲线
- 创建 NURBS 曲线和曲面对象
- 创建和编辑 NURBS 子对象
- 附加和导入 3ds Max 对象
- 公用子对象控件
- 编辑点子对象
- 编辑曲线 CV 子对象
- 编辑曲面 CV 子对象
- 编辑曲线子对象
- 编辑曲面子对象
- “软选择”卷展栏 (NURBS)
- “材质属性”卷展栏 (NURBS)
- 创建曲线子对象
- 创建曲面子对象
- 创建和编辑点子对象
- “NURBS 编辑”对话框
- “转化曲线”对话框 (NURBS)
- “转化曲面上的曲线”对话框 (NURBS)
- “转化曲面”对话框 (NURBS)
- CV 曲线:闭合曲线对话框 (NURBS)
- “分离”对话框 (NURBS)
- “编辑曲面上的曲线”对话框
- “编辑纹理曲面”对话框 (NURBS)
- “连接曲线”对话框 (NURBS)
- “连接曲线”对话框 (NURBS)
- “创建放样”对话框 (NURBS)
- “创建点”对话框 (NURBS)
- “创建点曲线”对话框 (NURBS)
- 点曲线:闭合曲线对话框 (NURBS)
- “重建 CV 曲线”对话框 (NURBS)
- “重建 CV 曲面”对话框 (NURBS)
- “重建纹理曲面”对话框 (NURBS)
- “重新参数化”对话框 (NURBS)
- “子对象克隆选项”对话框 (NURBS)
- “按材质 ID 选择”对话框 (NURBS)
- NURBS 曲线和曲面近似
- 低多边形建模工具
- Autodesk Civil View
- 数据交换
- 导入文件
- 导出场景并将场景转换成几何体格式
- 将几何体发送到其他 Autodesk 产品,以及从其他 Autodesk 产品发送几何体
- 链接 AutoCAD、FBX 或 Revit 文件
- 几何体文件格式
- 实体对象
- Adobe Illustrator (AI) 文件
- Alembic (ABC) 文件
- Alias 和 Showcase(WIRE 和 APF)文件
- 导出到 ASCII
- CATIA V4(MODEL、DLV4、DLV3、DLV、EXP、SESSION、MDL)文件
- CATIA V5 (CATPRODUCT, CATPART) 文件
- AutoCAD (DWG) 文件
- AutoCAD 交换 (DXF) 文件
- 3D DWF 文件
- Autodesk Inventor (IPT、IAM) 文件
- Autodesk Revit (RVT) 文件
- Autodesk FBX 文件
- FBX 插件 UI
- 导出
- 导入
- 3ds Max FBX plug-in工作流程
- 为 3ds Max FBX plug-in编写脚本
- 故障诊断和限制
- 故障诊断
- 纹理出现了什么问题?
- 为什么 Mudbox 模型渲染错误?
- 为什么文件增大这么多?
- 为什么会出现几何体偏移?
- 对象为何发生了偏移?
- 为什么在模型上可以看到边?
- 为什么 Revit 灯光在导入时重定向?
- 为什么导入或导出 Revit 文件需要花如此长的时间?
- Revit 摄影机怎么不见了?
- 进行导入和导出后,Revit 摄影机为何发生了变化?
- Revit 体量对象怎么不见了?
- Revit 对象为什么会隐藏或消失?
- Revit 组怎么不见了?
- 何为 Revit 的内部单位系统?
- Revit 日光入口怎么不见了?
- 在 3ds Max 中,场景的缩放比例为什么发生了变化?
- 3ds Max 旋转的边出了什么问题?
- 几何体为什么有面?
- MotionBuilder 中的边为什么看上去不一样?
- 显示层属性怎么不见了?
- 动画层怎么不见了?
- LOD 属性怎么不见了?
- 法线怎么不见了?
- 固定关键点怎么不见了?
- 是否可以关闭显示层导出/导入
- 限制
- 转换支持
- 故障诊断
- 游戏导出器实用程序
- IGES 文件
- JT Open Program (JT) 文件
- LandXML (XML, DEM) 文件
- 运动分析文件 (HTR/HTR2, TRC)
- OpenFlight (FLT) 文件
- Pro/ENGINEER(PRT、ASM)文件
- SAT 文件
- 导出到 Shockwave 3D
- Google SketchUp (SKP) 文件
- SolidWorks(SLDPRT、SLDASM)文件
- STEP(STP、STEP)文件
- Stereolithography (STL) 文件
- 3D Studio 网格(3DS、PRJ)文件
- 导入 SHP 文件
- UG-NX (PRT) 文件
- VIZ 渲染(DRF)文件
- VRML 文件
- Wavefront (OBJ) 文件
- 链接至 Stingray 游戏引擎
- 修改器
- 变换、修改器和对象数据流
- 使用修改器
- 世界空间修改器 (WSM)
- 对象空间修改器
- 对象空间修改器
- 使用影响区域修改器
- 使用“属性承载器”修改器
- 使用“弯曲”修改器
- 使用“倒角”修改器
- 使用倒角剖面修改器
- 关于“摄影机贴图”修改器(对象空间)
- 使用补洞修改器
- 使用“切角”修改器
- 使用“横截面”修改器
- 使用删除网格修改器
- 使用删除面片修改器
- 删除样条线修改器
- 使用置换近似修改器
- 使用“置换”修改器
- 关于编辑网格编辑器
- 关于“编辑法线”修改器
- 编辑面片修改器
- 编辑多边形修改器
- 编辑样条线修改器
- 挤出修改器
- 面挤出修改器
- FFD(自由形式变形)修改器
- 圆角/切角修改器
- 柔体修改器
- HSDS 修改器
- 车削修改器
- 晶格修改器
- 链接变换修改器
- 贴图缩放器修改器(对象空间)
- 材质修改器
- 按元素分配材质修改器
- 融化修改器
- 网格选择修改器
- 网格平滑修改器
- 镜像修改器
- 变形器修改器
- 多分辨率修改器
- 噪波修改器
- 法线修改器
- 规格化样条线修改器
- 优化修改器
- 面片选择修改器
- 面片变形修改器(对象空间)
- 路径变形修改器(对象空间)
- 点缓存修改器(对象空间)
- 多边形选择修改器
- 保留修改器
- 投影修改器
- 投影固定器修改器
- ProOptimizer 修改器
- 推力修改器
- 四边形网格化修改器
- 松弛修改器
- 可渲染样条线修改器
- 涟漪修改器
- 按通道选择修改器
- 壳修改器
- 倾斜修改器
- 使用“蒙皮”修改器
- 蒙皮变形修改器
- 蒙皮包裹修改器
- 蒙皮包裹面片修改器
- 切片修改器
- 平滑修改器
- 球形化修改器
- 样条线 IK 控制修改器
- 样条线选择修改器
- 挤压修改器
- STL 检查修改器
- 拉伸修改器
- 细分修改器(对象空间)
- 替换修改器
- 曲面修改器
- 使用修改器堆栈
- “曲面选择”修改器
- 曲面变形修改器(对象空间)
- 扫描修改器
- 对称修改器
- 锥化修改器
- 细化修改器
- 修剪/延伸修改器
- 涡轮平滑修改器
- 使用 gPoly 对象类型
- 转化为网格修改器
- 转化为面片修改器
- 转化为多边形修改器
- 扭曲修改器
- UVW 贴图修改器
- 顶点焊接修改器
- 顶点绘制修改器
- 体积选择修改器
- 波浪修改器
- 变换修改器
- 关于体素蒙皮
- 动画
- 动画概念和方法
- 动画和时间控件
- 使用控制器
- 动画控制器
- 音频控制器
- 重心变形控制器
- Bezier 控制器
- 块控制器
- 布尔控制器
- 颜色 RGB 控制器(Point3 XYZ 控制器)
- Euler XYZ 旋转控制器
- 表达式控制器
- 层控制器
- 限制控制器
- 线性控制器
- 列表控制器
- 局部 Euler XYZ 旋转控制器
- 注视控制器
- 主点控制器
- MCG 注视约束
- MCG 射线到曲面位置约束
- MCG 射线到曲面位置和方向约束
- MCG 射线到曲面变换约束
- MCG 1 DOF 旋转弹簧控制器
- MCG 3 DOF 旋转弹簧控制器
- 运动捕捉控制器
- 噪波控制器
- 启用/禁用控制器
- 位置 XYZ 控制器
- 位置/旋转/缩放控制器
- 反应控制器
- 缩放 XYZ 控制器
- 脚本控制器
- 平滑旋转控制器
- 弹簧控制器
- TCB 控制器
- 波形控制器
- XRef 控制器
- 动画约束
- 连线参数
- 层次和运动学
- 轨迹视图
- 运动混合器
- 保存和加载动画
- 动画工具
- 预设和偏移
- 使用 Maya 的分析器提高动画性能
- 角色动画
- CAT (Character Animation Toolkit)
- character studio
- 什么是 character studio?
- 使用 character studio 时应了解的内容
- 了解 Biped
- 了解轨迹编辑
- 了解动画工作台
- 理解运动流
- 了解 character studio 工作流程
- Biped
- 创建两足动物
- 了解 Biped 解剖学
- 更改初始 Biped 解剖学
- 命名 Biped
- 调整两足动物姿势
- 缩放链接
- 用橡皮圈移动手臂和腿部
- 两足动物显示选项
- 删除 Biped
- 将角色躯干部位链接到两足动物
- 加载和保存 FIG 文件
- 足迹动画
- 自由形式动画
- 使用 Biped 动画
- 加载、保存和显示 Biped 运动
- Biped 用户界面
- 使用工作台
- 使用运动流
- 使用运动捕捉数据
- character studio 文件格式
- character studio 步骤索引
- 填充
- 模拟和效果
- 空间扭曲对象
- 粒子系统
- 粒子流
- 粒子流如何工作
- 粒子流用户界面
- 动作
- mParticles 和高级数据操纵
- mParticles
- “mParticles 出生”操作符
- mParticles 流
- “mParticles 世界”辅助对象
- mParticles 操作符和测试
- mParticles 修改器
- “mParticles 数据”子操作符
- “自定义 mParticles 模拟”工具
- 使用 MAXScript 对模拟进行基准测试
- 高级数据操纵
- mParticles
- 粒子流
- MassFX
- Hair 和 Fur 修改器(世界空间)
- 布料和 Garment Maker 修改器
- 效果和环境
- 可视化 CFD 数据
- 照明和明暗处理
- 灯光
- 照明分析助手
- 材质编辑器、材质和贴图
- 工作流程:创建和指定材质
- 材质编辑器
- 精简材质编辑器
- Slate 材质编辑器
- 移动有关场景的材质、贴图和颜色
- 材质/贴图浏览器
- 材质管理器
- 材质类型
- 贴图和明暗器
- 硬件明暗处理
- 材质、贴图和顶点颜色工具
- 渲染
- 相机
- 渲染静止图像或动画
- 渲染帧窗口
- “渲染输出文件”对话框
- 查看媒体文件
- 渲染命令
- 渲染器
- 渲染消息窗口
- 默认扫描线渲染器
- A360 云渲染
- ART 渲染器
- iray 渲染器
- mental ray 渲染器
- Quicksilver 硬件渲染器
- VUE 文件渲染器
- 渲染单独的元素
- 工作流:渲染到纹理(纹理烘焙)
- 创建视口快照
- 渲染预览动画
- 比较媒体文件(RAM 播放器)
- 创建全景
- 网络渲染
- 使用“批处理渲染”工具
- 命令行渲染
- Max Creation Graph
- 自定义 3ds Max
- 键盘快捷键
- 参考
- 3ds Max 帮助存档主题
- 疑难解答
- 词汇表
- 2 面(双面)
- 2D 贴图
- 3D 贴图
- 操作
- 活动链接
- 活动时间段
- 活动/非活动足迹
- 自适应锁定
- 调整
- 自适应降级
- 增加的不透明度
- 调整特征姿势
- 仿射变换
- 悬空周期
- 锯齿/抗锯齿
- Alpha 通道
- 环境光颜色
- 环境光
- 动画纹理
- 动画
- 动画控制器/变换控制器
- 动画层
- 应用式 IK
- 区域灯光(mental ray 渲染器)
- 区域阴影
- 纵横比
- 资源
- 附件 (IK)
- 衰减
- 自动栅格
- 避免行为
- 回避行为
- 三向投影视图
- B 样条线
- 平衡因素
- 平衡轨迹
- 弹道步态
- 弹道张力
- 重心坐标
- 行为
- 弯曲链接
- Bezier 曲线
- Biped
- Biped 动力学
- 出生事件
- 位图
- 混合对象
- 块参考
- 块/样式父级
- 模糊/模糊偏移
- 躯干空间
- 布尔操作
- 边界顶点
- 边界框
- 凸出
- 凸出角度
- 按层/按对象
- 重心 (COM)
- 切角
- 剪辑控制器
- 剪切平面
- 编解码器
- 认知控制器
- 组件
- 合成
- 复合材质
- 约束点
- 接触对象
- 容器
- 连续性
- 连续性级别
- 控制晶格
- 控制点
- 控制顶点 (CV)
- 控制器
- 凸面外壳属性
- 冷却
- 坐标空间
- 创建参数
- 横截面
- 群组
- 群组系统
- 曲线视图
- CV
- CV 曲线
- CV 曲面
- 可变形封套
- 变形
- 变形样条线
- 度数
- 代理
- 从属对象
- 从属对象 (NURBS)
- 仓库
- “描述”面板
- 对角线
- 漫反射颜色
- 抖动
- 停靠与浮动
- 双脚支撑周期
- 虚拟对象
- 动力学
- 动力学混合
- 减缓曲线
- 边
- 可编辑网格
- 可编辑多边形
- 元素
- 发射器
- 末端效应器
- 封套
- 事件
- 事件显示
- 事件级别
- 范围
- 面/多边形
- 面状
- FFD
- 视野
- 场
- 体形模式
- 圆角
- 过滤色/过滤不透明性
- 过滤(抗锯齿)
- 过滤(角色动画)
- 最终聚集(mental ray 渲染器)
- 第一个顶点
- 平面镜
- 流
- 荧光
- 弹出按钮
- 跟随对象
- 脚部状态
- 足迹动画
- 足迹方法
- 正向运动学
- 正向运动学 (Biped)
- 帧/帧速率
- 自由格式的动画
- 自由形式方法
- 冻结/解冻
- 功能曲线
- 熔合
- G 缓冲区
- 步态方案
- 步态类型
- Gamma 校正
- 几何基本体
- Gizmo/中心
- 全局事件
- 全局运动剪辑控制器
- 光泽度和高光度设置
- 重力加速度
- 重力
- 栅格对象
- 头对象
- 辅助对象
- 隐藏/取消隐藏
- 层次链接
- 主栅格
- 地平线
- 热材质
- 聚光区/衰减区
- IK 混合
- IK 目标
- IK 解决方案
- 照度
- 图像运动模糊
- 就位模式 (Biped)
- 独立
- 影响
- 初始姿势
- 初始化
- 输入:事件
- 实例
- 实例(运动混合器)
- 交互式渲染器
- 插值
- 反向运动学
- 反向运动学 (Biped)
- 等参线
- 等距视图
- 关键帧模式
- 关键帧/关键点
- 运动学链
- 结
- 启动脚本
- 层轨迹
- 层
- 布局模式
- 抬起
- 光贴图
- 链接的几何体
- 链接
- 侦听器窗口
- 本地容器
- 局部坐标系
- 局部事件
- 放样
- 注视对象
- 亮度
- 光通量
- 发光强度
- 贴图通道
- 贴图材质
- 贴图坐标
- 贴图
- 标记数据
- 标记文件
- 标记
- 主块运动剪辑控制器
- 匹配帧
- 材质 ID
- 材质/贴图层次
- 材质
- 隐藏对象
- MAX 文件
- MAXScript
- 网格
- 变形球
- 镜像
- 混合
- 合成
- 模式/无模式
- 修改器堆栈
- 修改器
- 变形
- 运动混合
- 运动模糊
- 运动捕获
- 运动剪辑
- 运动流
- 运动流编辑器
- 运动流脚本
- 运动混合器 (Biped)
- 运动合成
- 多样性
- 倍增
- 增强曲线
- N 个链接
- 网络管理器
- 网络渲染
- 网络渲染服务器
- 牛顿
- 节点
- 法线
- NTSC
- NURBS
- NURBS 曲线
- NURBS 模型
- NURBS 曲面
- NURMS
- 对象
- 对象实例
- 对象运动模糊
- 对象空间
- 对象空间 (Biped)
- 对象空间修改器 (OSM)
- 障碍物回避行为
- 全向灯
- 泛方向导向器
- 不透明度衰减
- 运算对象
- 操作符
- 操作符图标
- 视觉标记
- 方向行为
- 原点
- 正交视图
- 超出范围类型
- 输出:源/测试
- 泛光化
- PAL
- 参数空间
- “参数”面板
- 参数/参量
- 参数化对象
- 父粒子
- 粒子图表
- 粒子级别
- 粒子系统
- 粒子系统(粒子流)
- 面片
- 基于面片的对象
- 路径
- 路径追随行为
- 周期
- 透视图
- 腿部运动周期
- 光度学
- 光子贴图
- Physique
- 轴点
- 像素
- 踩踏
- 插件
- 点
- 点曲线
- 点曲面
- 姿势
- 位置标记
- 姿势
- 优先级
- 预乘 Alpha
- 主材质通道
- 程序贴图
- 投影灯
- 道具骨骼
- 四元树
- 队列监视器
- 光能传递
- 光能传递解决方案
- 光线跟踪阴影
- 实时
- 红、绿、蓝/色调、饱和度、值
- 参考
- 参考对象
- 优化
- 反射比
- 重新初始化 (Physique)
- 排斥行为
- 库
- 分辨率
- 对位
- 橡皮圈模式
- RVT 链接
- 安全框
- 样品范围
- 缩放步幅
- 扫描线渲染器
- 场景
- 场景范围
- 场景运动模糊
- 场景单位
- 图解视图
- 脚本
- 脚本编辑器窗口
- 脚本化行为
- “脚本工具”面板
- 脚本(运动流)
- 脚本
- 种子值
- 查找行为
- 线段
- 自发光
- 明暗器(mental ray 渲染器)
- 明暗器(标准材质)
- 阴影偏移
- 阴影贴图
- 图形和样条线
- 天光
- 滑动足迹
- 平滑组
- SMPTE
- 源容器
- 空间扭曲行为
- 空间扭曲
- 繁殖粒子
- 高光颜色
- 速度改变行为
- 接合
- 样条线
- 样条线动力学
- SteeringWheels 导航
- 子对象
- 子对象层级
- 相减不透明度
- 太阳光
- 超级黑
- 支撑周期
- 曲面获得行为
- 曲面追随行为
- 扫描对象
- 合成, 合成
- 特征体形模式
- 切线
- TCB (Biped)
- TCB(张力、连续性和偏移)
- 腱
- 张力、连续性、偏移 (Biped)
- 地形
- 测试
- Texel
- 纹理
- 十字叉
- 平铺/镜像
- 拓扑
- 拓朴相关修改器
- 接触
- 轨迹
- 轨迹视图
- 轨迹组
- 轨迹
- 轨迹 (Biped)
- 变换 Gizmo
- 变换
- 变换
- 变换轨迹
- 半透明
- 真彩色
- 扭曲链接
- 唯一容器
- 通用命名约定 (UNC)
- UVW 坐标
- 矢量场
- 矢量场空间扭曲
- 向量和向量控制柄
- 速度插值
- 顶点
- 顶点颜色
- ViewCube 导航系统
- 视口(交互式)渲染器
- VIZ 块
- 走步
- 穿行助手
- 墙壁排斥行为
- 墙查找行为
- 漫步行为
- 权重曲线
- 关联
- 线框颜色
- 线框模式
- 工作台
- 工作流程
- 世界坐标系
- 世界空间
- 世界空间 (Biped)
- 世界空间修改器 (WSM)
- xref(AutoCAD 外部参考)
- 外部参照(3ds Max 外部参照文件)
3ds Max 帮助归档
- Autodesk 3ds Max 帮助归档
- 非事件驱动的粒子系统
- Physique
- 群组动画
- Combustion 支持
- 使用光能传递建立全局照明模型
- 视频后期合成
- 实用工具
“随机”子操作符
“受控的混乱”的概念是粒子系统的本质。若要将混乱应用到“数据”操作符,请使用“随机”子操作符。“随机”子操作符使用不同的算法以标量和向量格式生成随机值,如本部分中所述。
- “粒子视图” “数据图标/操作符/图标测试/测试” 单击“编辑数据流”。 添加或选择“随机”。
检查随机示例
现在我们从如何以混乱的方式将粒子放置在参考对象周围的示例开始:请参见附带的文件 RandomPositioning.max 。
在以上所示的数据流中,“几何体”子操作符 (1.) 将随机点均匀地分布在参考对象的曲面上。其“对”数据输出分割为两个不同的“转换”子操作符:面局部坐标 (2.) 和复合索引 (3.),复合索引包含随机点所在的面索引。
若要获得参考对象周围粒子的理想体积分布,我们需要从曲面“升起”粒子;此操作可以通过修改面局部坐标向量的 Z 分量实现。Z 分量是在面法线方向距面的距离。
“随机”子操作符 (4.) 可用于定义“升起”的量。对于此示例,我们使用“指数”分布,这是正向分布且在零附近分布更密集。这样,距曲面越近,粒子越多,密度随着与曲面距离的增加而逐渐减小。
然后修改的面局部坐标值和复合索引将转换回“对”数据格式,该格式用于在“几何体”子操作符 (5.) 中计算粒子在世界坐标中的位置。
让我们仔细查看“随机”子操作符的“分布”参数。该参数定义子操作符中使用的随机函数的类型。函数类型还取决于“随机”子操作符生成的数据类型。
在接下来的讨论中,打开附带的场景文件 RandomTemplate.max ,从中可以使用不同的分布函数来演示效果。
您将从简单的分布类型开始:“统一离散”。如果“随机”子操作符设置为“整数”数据类型,这将是唯一可用的类型。离散与连续相对。“随机”子操作符生成在最小值和最大值之间均匀分布的整数数据(从这种意义上说,它是离散的),如 UI 中所定义。在下一示例 ( RandomTemplate01.max ) 中,最小值和最大值设置为 0 和 30。因此,可以看到粒子位置沿 X 坐标线(0、1、2、3 等,最大为 30)分布。以下是有关“统一离散”分布理论的详细信息。
“实数”数据输出类型提供了各种可用的分布类型。
“统一”分布类型非常类似于“统一离散”类型,拥有最小值和最大值以定义分布范围,但现在输出值连续分布在范围间隔内。以下是有关“统一”分布的详细信息。
“指数”分布选项通常用于可靠性工程。它可用于建模单位的行为,该单位具有完全随机的恒定故障率。指数分布的另一个示例是在放射性衰变中的不稳定粒子的个别生命周期分布。
“指数”分布选项只生成正值。大约一半的生成值小于“平均值”参数值;更多的生成值接近于零。生成的值可以是任意大;但是,值越大生成的可能性越小。在此示例 ( RandomTemplate02.max ) 中,平均值为 10;因此,大多数生成的值介于 0 和 70 之间。以下是有关“指数”分布的详细信息。
正态(或高斯)分布选项描述了观测值的独立随机误差的分布。其他通常采用正态分布或接近正态分布的示例包括体温、鞋的尺码、树的直径等。正态分布图是对称的钟形曲线。“平均值”参数定义了生成值的平均值(钟形曲线中心),“Sigma”参数则定义了生成值可以与平均值偏差多少。大多数值 (99.7%) 在 3 个 Sigma 偏移区间 [平均值 - 3*Sigma, 平均值 + 3*Sigma] 内生成。在以下示例 ( RandomTemplate03.max ) 中,“平均值”参数是 30,“Sigma”参数设置为 10,因此大多数生成值落到区间 [0.0, 60] 中。正态分布生成负值和正值。生成的值可以是任意大;但是,值越大生成的可能性越小(请参见上方的 3 Sigma 规则)。以下是有关“正态”分布的详细信息。
“三角形”分布选项是一种描述随机现象的简单方法,随机现象倾向于某个峰值,并受最小值和最大值范围的限制。在此示例 ( RandomTemplate04.max ) 中,“三角形”分布模拟上一个示例中的“正态”分布。以下是有关“三角形”分布的详细信息。
“韦伯”分布方法将“指数”分布延伸到不完全随机的事件;分布通常用于可靠性和具有老化过程的生命周期建模。在此示例 ( RandomTemplate05.max ) 中,“速率”参数等于 1.0,从而使“韦伯”分布等于“指数”分布,其“平均值”参数作为“韦伯缩放”参数。
您可以使用“韦伯”分布建模时间,直到给定的技术设备发生故障。如果设备的故障率会随时间的推移而减小,则设置“速率”< 1。如果设备的故障率会随时间的推移而增大,则设置“速率”> 1。“韦伯”分布也可以用于建模地球上给定位置的风速的分布 - 每个位置的特征用特定的“速率”和“缩放”参数表示。在此示例 ( RandomTemplate06.max ) 中,故障率等于 4,“缩放”等于 10,从而使大多数生成的随机值位于区间 [3.0, 15.0] 中。以下是有关“韦伯”分布的详细信息。
可以使用“噪波 R”、“噪波 V”、“噪波 V+T”、“湍流 V”和“湍流 V+T”选项在输入实数、向量和/或时间数据的基础上生成伪随机噪波类型值。“缩放”参数设置输入和输出数据之间的依存关系速率。较大的值产生更为平滑的噪波,较小的值产生锯齿现象更严重的噪波。“强度”参数控制输出值的大小。
“湍流”选项有“迭代次数”参数,它控制迭代次数或用于生成分形噪波的八度。较小的“迭代次数”值会创建更平滑的输出。“迭代次数”参数范围从 1.0 到 10.0。“噪波”选项生成正和负输出值;“湍流”选项只生成正值。
此示例 ( RandomTemplate07.max ) 使用粒子的随机 X 坐标生成 Y 坐标的相似噪波随机值:
在下一示例 ( RandomTemplate08.max ) 中,粒子随机放置在“数据”操作符图标的表面,然后使用“噪波 V”选项将其位置用作“随机”子操作符的输入。输出数据用于定义粒子的高度(Z 轴位置)。
通过关联“绝对时间”到“...+T”选项的“时间”输入,生成的噪波可以轻松设置动画,如本示例 ( RandomTemplate09.max ) 中所示:
“湍流”选项非常类似于“噪波”选项。您只需定义“迭代次数”参数,如此示例 ( RandomTemplate10.max ) 中所示。
和此示例 ( RandomTemplate11.max ) 中所示:
最后一个类别的分布选项输出“向量”数据。
“统一”分布选项使用 X 分量的限值 [–Max X, Max X]、Y 分量的限值 [–Max Y, Max Y] 和 Z 分量的限值 [–Max Z, Max Z] 在边界框内生成随机向量值。具有足够数量的粒子时,边界框可填充随机向量点 ( RandomTemplate12.max ):
“球体曲面”选项可用于将粒子放置在球体的曲面上。但是,最常见的用法是沿随机方向生成一个向量。在这种情况下,“半径”参数定义向量的长度 ( RandomTemplate13.max ):
或者您可能希望通过随机点填充整个“球体体积”( RandomTemplate14.max ):
您也可以使用“正态(高斯)”选项来填充球体体积,但使用此选项没有球体边界 - 靠近球体中心生成更多的点,并向外部逐渐减少。与以前一样的 3 Sigma 规则可以应用于此处:99.7% 的点在半径等于 3*Sigma 的球体内部生成 ( RandomTemplate15.max )。
“噪波 V”、“噪波 V+T”、“湍流 V”和“湍流 V+T”选项类似于相同名称的“实数”数据选项,只是它们生成的是“向量”数据。要显示输出数据,我们可以将其插入到后续步骤中的速度通道,并在前期步骤中将速度设置为零。按这种方式,粒子不会移动至任何位置,但我们可以绘制输出作为速度线。在此示例 ( RandomTemplate16.max ) 中,将粒子随机放置在矩形中,然后使用“噪波 V”选项将其位置用作“随机”子操作符的输入:
在这里 ( RandomTemplate17.max ) 使用的设置相同,但采用了“噪波 V+T”选项。我们使用当前时间作为“随机”子操作符的输入以设置“噪波”输出的动画:
我们可以将“随机”输出关联到“速度”通道,并使用“位置”通道作为“随机”子操作符的输入(这可用于模拟风湍流)。这是场景文件 RandomTemplate18.max 的第 98 帧:
界面
- 输出类型
- 选择要输出的数据类型:
- 整数
- 实数
- 向量
“输出类型”设置确定“分布”组中可用的参数。
“分布”组
“分布”下拉列表的内容取决于“输出类型”选项。“分布”选项反过来又确定“分布”组中的剩余参数。
请参见前面讨论的有关“分布”选项和相关参数的特定信息。
- 参数动画同步
- 如果对子操作符参数进行了动画设置,则软件可以从动画的开始帧或当前事件的第一帧开始,将此动画应用于所有粒子,或根据每个粒子的年龄应用于相应粒子。这些选项包括:
- 绝对时间为参数设置的任意关键点在为其设置关键点的实际帧处应用。
- 事件持续时间为参数设置的任意关键点相对于每个粒子第一次进入事件的帧应用于每个粒子。
- 粒子年龄为参数设置的任意关键点在每个粒子存在的相应帧处应用。
- 粒子寿命将参数动画缩放/映射到粒子寿命期间。例如,如果在 0 至 100 帧中从 5 至 20 帧为参数值设置动画,则当粒子出生时该参数的值为 5,当粒子死亡时该参数的值为 20。例如,用这种方法可以定义粒子的缩放在其寿命期间发生的更改。
为了使此选项正常工作,必须在流中将“删除”操作符设置为“按粒子年龄”,以定义粒子寿命。
- 时间数据输入将时间输入添加到子操作符中,您可以将输出时间格式的数据的任何其他子操作符链接到该子操作符。
- E6
- 添加相等类型数据输入,用于控制“动画同步”值。这可以仅从“类型”设置为“动画同步”的“参数”子操作符接收输入。
- 唯一性
- 可以改变“随机”子操作符生成的随机数序列。手动输入一个“种子”值或单击“新建”以使软件生成一个“种子”值。
- E7
- 添加相等类型数据输入,用于控制“唯一性”值。这可以仅从“类型”设置为“唯一性”的“参数”子操作符接收输入。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论