- 第 1 章 安装 Python
- 1.2. Windows 上的 Python
- 1.3. Mac OS X 上的 Python
- 1.4. Mac OS 9 上的 Python
- 1.5. RedHat Linux 上的 Python
- 1.6. Debian GNU/Linux 上的 Python
- 1.7. 从源代码安装 Python
- 1.8. 使用 Python 的交互 Shell
- 1.9. 小结
- 第 2 章 第一个 Python 程序
- 2.2. 函数声明
- 2.3. 文档化函数
- 2.4. 万物皆对象
- 2.5. 代码缩进
- 2.6. 测试模块
- 第 3 章 内置数据类型
- 3.2. List 介绍
- 3.3. Tuple 介绍
- 3.4. 变量声明
- 3.5. 格式化字符串
- 3.6. 映射 list
- 3.7. 连接 list 与分割字符串
- 3.8. 小结
- 第 4 章 自省的威力
- 4.2. 使用可选参数和命名参数
- 4.3. 使用 type、str、dir 和其它内置函数
- 4.4. 通过 getattr 获取对象引用
- 4.5. 过滤列表
- 4.6. and 和 or 的特殊性质
- 4.7. 使用 lambda 函数
- 4.8. 全部放在一起
- 4.9. 小结
- 第 5 章 对象和面向对象
- 5.2. 使用 from module import 导入模块
- 5.3. 类的定义
- 5.4. 类的实例化
- 5.5. 探索 UserDict: 一个封装类
- 5.6. 专用类方法
- 5.7. 高级专用类方法
- 5.8. 类属性介绍
- 5.9. 私有函数
- 5.10. 小结
- 第 6 章 异常和文件处理
- 6.2. 与文件对象共事
- 6.3. for 循环
- 6.4. 使用 sys.modules
- 6.5. 与 Directory 共事
- 6.6. 全部放在一起
- 6.7. 小结
- 第 7 章 正则表达式
- 7.2. 个案研究:街道地址
- 7.3. 个案研究:罗马字母
- 7.4. 使用{n,m} 语法
- 7.5. 松散正则表达式
- 7.6. 个案研究: 解析电话号码
- 7.7. 小结
- 第 8 章 HTML 处理
- 8.2. sgmllib.py 介绍
- 8.3. 从 HTML 文档中提取数据
- 8.4. BaseHTMLProcessor.py 介绍
- 8.5. locals 和 globals
- 8.6. 基于 dictionary 的字符串格式化
- 8.7. 给属性值加引号
- 8.8. dialect.py 介绍
- 8.9. 全部放在一起
- 8.10. 小结
- 第 9 章 XML 处理
- 9.2. 包
- 9.3. XML 解析
- 9.4. Unicode
- 9.5. 搜索元素
- 9.6. 访问元素属性
- 9.7. Segue
- 第 10 章 Scripts 和 Streams
- 10.2. 标准输入、输出和错误
- 10.3. 缓冲节点查询
- 10.4. 查找节点的直接子节点
- 10.5. 通过节点类型创建独立的处理句柄 Creating separate handlers by node type
- 10.6. 处理命令行参数
- 10.7. 全部放在一起
- 10.8. 小结
- 第 11 章 HTTP Web 服务
- 11.2. 避免通过 HTTP 重复地获取数据
- 11.3. HTTP 的特性
- 11.4. 调试 HTTP web 服务
- 11.5. 设置 User-Agent
- 11.6. 处理 Last-Modified 和 ETag
- 11.7. 处理重定向
- 11.8. 处理被压缩的数据
- 11.9. 全部放在一起
- 11.10. 小结
- 第 12 章 SOAP Web 服务
- 12.2. 安装 SOAP 库
- 12.3. 步入 SOAP
- 12.4. SOAP 网络服务查错
- 12.5. WSDL 介绍
- 12.6. 以 WSDL 进行 SOAP 内省
- 12.7. 搜索 Google
- 12.8. SOAP 网络服务故障排除
- 12.9. 小结
- 第 13 章 单元测试
- 13.2. 深入
- 13.3. 介绍 romantest.py
- 13.4. 正面测试(Testing for success)
- 13.5. 负面测试(Testing for failure)
- 13.6. 完备性检测(Testing for sanity)
- 第 14 章 以测试优先为原则的编程
- 14.2. roman.py, 第 2 阶段
- 14.3. roman.py, 第 3 阶段
- 14.4. roman.py, 第 4 阶段
- 14.5. roman.py, 第 5 阶段
- 第 15 章 重构
- 15.2. 应对需求变化
- 15.3. 重构
- 15.4. 后记
- 15.5. 小结
- 第 16 章 有效编程(Functional Programming)
- 16.2. 找到路径
- 16.3. 过滤已访问列表
- 16.4. 关联已访问列表
- 16.5. 数据中心思想编程
- 16.6. 动态导入模块
- 16.7. 全部放在一起
- 16.8. 小结
- 第 17 章 动态函数
- 17.2. plural.py, 第 1 阶段
- 17.3. plural.py, 第 2 阶段
- 17.4. plural.py, 第 3 阶段
- 17.5. plural.py, 第 4 阶段
- 17.6. plural.py, 第 5 阶段
- 17.7. plural.py, 第 6 阶段
- 17.8. 小结
- 第 18 章 性能优化
- 18.2. 使用 timeit 模块
- 18.3. 优化正则表达式
- 18.4. 优化字典查找
- 18.5. 优化列表操作
- 18.6. 优化字符串操作
- 18.7. 小结
- 附录 A. 进一步阅读
- 附录 B. 五分钟回顾
- 附录 C. 技巧和窍门
- 附录 D. 示例清单
- 附录 E. 修订历史
- 附录 F. 关于本书
- 附录 G. GNU Free Documentation License
- G.1. Applicability and definitions
- G.2. Verbatim copying
- G.3. Copying in quantity
- G.4. Modifications
- G.5. Combining documents
- G.6. Collections of documents
- G.7. Aggregation with independent works
- G.8. Translation
- G.9. Termination
- G.10. Future revisions of this license
- G.11. How to use this License for your documents
- 附录 H. Python license
- H.B. Terms and conditions for accessing or otherwise using Python
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
16.4. 关联已访问列表
16.4. 关联已访问列表
你对使用 列表遍历 将列表关联起来的做法已经熟知。 另一种方法可以完成同样的工作:使用内建 map 函数。 它的工作机理和 filter 函数类似。
例 16.10. 介绍 map
>>> def double(n): ... return n*2 ... >>> li = [1, 2, 3, 5, 9, 10, 256, -3] >>> map(double, li) [2, 4, 6, 10, 18, 20, 512, -6] >>> [double(n) for n in li] [2, 4, 6, 10, 18, 20, 512, -6] >>> newlist = [] >>> for n in li: ... newlist.append(double(n)) ... >>> newlist [2, 4, 6, 10, 18, 20, 512, -6]
map 接受一个函数和一个列表作为参数,[8] 并以列表中每个元素顺序地调用函数返回一个新的列表。 在这个例子中,函数仅仅是将每个元素乘以2。 | |
使用列表遍历的方法你可以做到相同的事情。 列表遍历是在 Python 2.0版时被引入的,map 便从此永远盘桓。 | |
你如果坚持以 Visual Basic 程序员而自居,通过 for 循环的方法完成相同的任务也完全可以。 |
例 16.11. map 与混合数据类型的列表
>>> li = [5, 'a', (2, 'b')] >>> map(double, li) [10, 'aa', (2, 'b', 2, 'b')]
作为一个旁注,我想指出只要提供的那个函数能够正确处理各种数据类型, map 对于混合数据类型列表的处理同样出色。 在这里,这个 double 函数仅仅是将给定参数乘以 2 , Python 根据参数的数据类型决定 正确操作 的方法。 对整数而言,这意味着乘 2 ;对字符串而言,意味着把自身和自身连接;对于元组,意味着构建一个包括原始元组全部元素和原始元组组合在一起的新元组。 |
好了,玩够了。让我们来看一些真实代码。
例 16.12. regression.py 中的 map
filenameToModuleName = lambda f: os.path.splitext(f)[0] moduleNames = map(filenameToModuleName, files)
正如你在 第 4.7 节 “使用 lambda 函数” 中所见, lambda 定义一个内嵌函数。 也正如你在 例 6.17 “分割路径名” 中所见, os.path.splitext 接受一个文件名并返回一个元组 (name, extension)。因此 filenameToModuleName 是一个接受文件名并提出文件扩展名而只返回文件名称的函数。 | |
调用它 map 接受files列出的所有文件名,把它传递给 filenameToModuleName 函数,并且返回每个函数调用结果所组成的列表。 换句话说,你剔除掉文件名的扩展名,并将剔除后的文件名存于 moduleNames 之中。 |
如你在本章剩余部分将看到的,你可以将这种数据中心思想扩展应用到定义和执行一个容纳来自很多单个测试套件的测试的一个测试套件的最终目标。
Footnotes
[8] 同前,我需要指出 map 可以接受一个列标、元组,或者一个像序列一样的对象。参见前面的关于 filter 的脚注。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论