返回介绍

solution / 1400-1499 / 1423.Maximum Points You Can Obtain from Cards / README_EN

发布于 2024-06-17 01:03:19 字数 7721 浏览 0 评论 0 收藏 0

1423. Maximum Points You Can Obtain from Cards

中文文档

Description

There are several cards arranged in a row, and each card has an associated number of points. The points are given in the integer array cardPoints.

In one step, you can take one card from the beginning or from the end of the row. You have to take exactly k cards.

Your score is the sum of the points of the cards you have taken.

Given the integer array cardPoints and the integer k, return the _maximum score_ you can obtain.

 

Example 1:

Input: cardPoints = [1,2,3,4,5,6,1], k = 3
Output: 12
Explanation: After the first step, your score will always be 1. However, choosing the rightmost card first will maximize your total score. The optimal strategy is to take the three cards on the right, giving a final score of 1 + 6 + 5 = 12.

Example 2:

Input: cardPoints = [2,2,2], k = 2
Output: 4
Explanation: Regardless of which two cards you take, your score will always be 4.

Example 3:

Input: cardPoints = [9,7,7,9,7,7,9], k = 7
Output: 55
Explanation: You have to take all the cards. Your score is the sum of points of all cards.

 

Constraints:

  • 1 <= cardPoints.length <= 105
  • 1 <= cardPoints[i] <= 104
  • 1 <= k <= cardPoints.length

Solutions

Solution 1: Sliding Window

We can use a sliding window of length $k$ to simulate this process.

Initially, we place the window at the end of the array, i.e., the $k$ positions from index $n-k$ to index $n-1$. The sum of the points of the cards in the window is denoted as $s$, and the initial value of the answer $ans$ is also $s$.

Next, we consider the situation where we take $1, 2, …, k$ cards from the beginning of the array in turn. Suppose the card taken is $cardPoints[i]$. Then we add it to $s$. Due to the length limit of the window is $k$, we need to subtract $cardPoints[n-k+i]$ from $s$. In this way, we can calculate the sum of the points of the $k$ cards taken and update the answer $ans$.

The time complexity is $O(k)$, where $k$ is the integer given in the problem. The space complexity is $O(1)$.

class Solution:
  def maxScore(self, cardPoints: List[int], k: int) -> int:
    ans = s = sum(cardPoints[-k:])
    for i, x in enumerate(cardPoints[:k]):
      s += x - cardPoints[-k + i]
      ans = max(ans, s)
    return ans
class Solution {
  public int maxScore(int[] cardPoints, int k) {
    int s = 0, n = cardPoints.length;
    for (int i = n - k; i < n; ++i) {
      s += cardPoints[i];
    }
    int ans = s;
    for (int i = 0; i < k; ++i) {
      s += cardPoints[i] - cardPoints[n - k + i];
      ans = Math.max(ans, s);
    }
    return ans;
  }
}
class Solution {
public:
  int maxScore(vector<int>& cardPoints, int k) {
    int n = cardPoints.size();
    int s = accumulate(cardPoints.end() - k, cardPoints.end(), 0);
    int ans = s;
    for (int i = 0; i < k; ++i) {
      s += cardPoints[i] - cardPoints[n - k + i];
      ans = max(ans, s);
    }
    return ans;
  }
};
func maxScore(cardPoints []int, k int) int {
  n := len(cardPoints)
  s := 0
  for _, x := range cardPoints[n-k:] {
    s += x
  }
  ans := s
  for i := 0; i < k; i++ {
    s += cardPoints[i] - cardPoints[n-k+i]
    ans = max(ans, s)
  }
  return ans
}
function maxScore(cardPoints: number[], k: number): number {
  const n = cardPoints.length;
  let s = cardPoints.slice(-k).reduce((a, b) => a + b);
  let ans = s;
  for (let i = 0; i < k; ++i) {
    s += cardPoints[i] - cardPoints[n - k + i];
    ans = Math.max(ans, s);
  }
  return ans;
}
impl Solution {
  pub fn max_score(card_points: Vec<i32>, k: i32) -> i32 {
    let n = card_points.len();
    let k = k as usize;
    let mut s: i32 = card_points[n - k..].iter().sum();
    let mut ans: i32 = s;
    for i in 0..k {
      s += card_points[i] - card_points[n - k + i];
      ans = ans.max(s);
    }
    ans
  }
}
/**
 * @param {number[]} cardPoints
 * @param {number} k
 * @return {number}
 */
var maxScore = function (cardPoints, k) {
  const n = cardPoints.length;
  let s = cardPoints.slice(-k).reduce((a, b) => a + b);
  let ans = s;
  for (let i = 0; i < k; ++i) {
    s += cardPoints[i] - cardPoints[n - k + i];
    ans = Math.max(ans, s);
  }
  return ans;
};
public class Solution {
  public int MaxScore(int[] cardPoints, int k) {
    int n = cardPoints.Length;
    int s = cardPoints[^k..].Sum();
    int ans = s;
    for (int i = 0; i < k; ++i) {
      s += cardPoints[i] - cardPoints[n - k + i];
      ans = Math.Max(ans, s);
    }
    return ans;
  }
}
class Solution {
  /**
   * @param Integer[] $cardPoints
   * @param Integer $k
   * @return Integer
   */
  function maxScore($cardPoints, $k) {
    $n = count($cardPoints);
    $s = array_sum(array_slice($cardPoints, -$k));
    $ans = $s;
    for ($i = 0; $i < $k; ++$i) {
      $s += $cardPoints[$i] - $cardPoints[$n - $k + $i];
      $ans = max($ans, $s);
    }
    return $ans;
  }
}
object Solution {
  def maxScore(cardPoints: Array[Int], k: Int): Int = {
    val n = cardPoints.length
    var s = cardPoints.takeRight(k).sum
    var ans = s
    for (i <- 0 until k) {
      s += cardPoints(i) - cardPoints(n - k + i)
      ans = ans.max(s)
    }
    ans
  }
}
class Solution {
  func maxScore(_ cardPoints: [Int], _ k: Int) -> Int {
    let n = cardPoints.count
    var s = cardPoints.suffix(k).reduce(0, +)
    var ans = s
    for i in 0..<k {
      s += cardPoints[i] - cardPoints[n - k + i]
      ans = max(ans, s)
    }
    return ans
  }
}
# @param {Integer[]} card_points
# @param {Integer} k
# @return {Integer}
def max_score(card_points, k)
  n = card_points.length
  s = card_points[-k..].sum
  ans = s
  k.times do |i|
  s += card_points[i] - card_points[n - k + i]
  ans = [ans, s].max
  end
  ans
end
class Solution {
  fun maxScore(cardPoints: IntArray, k: Int): Int {
    val n = cardPoints.size
    var s = cardPoints.sliceArray(n - k until n).sum()
    var ans = s
    for (i in 0 until k) {
      s += cardPoints[i] - cardPoints[n - k + i]
      ans = maxOf(ans, s)
    }
    return ans
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文