概述
文章
- 基础篇
- 进阶篇
- 其他篇
用户指南
NumPy 参考手册
- 数组对象
- 常量
- 通函数(ufunc)
- 常用 API
- 创建数组
- 数组处理程序
- 二进制运算
- 字符串操作
- C-Types 外部函数接口(numpy.ctypeslib)
- 时间日期相关
- 数据类型相关
- 可选的 Scipy 加速支持(numpy.dual)
- 具有自动域的数学函数( numpy.emath)
- 浮点错误处理
- 离散傅立叶变换(numpy.fft)
- 财金相关
- 实用的功能
- 特殊的 NumPy 帮助功能
- 索引相关
- 输入和输出
- 线性代数(numpy.linalg)
- 逻辑函数
- 操作掩码数组
- 数学函数(Mathematical functions)
- 矩阵库 (numpy.matlib)
- 杂项(Miscellaneous routines)
- 填充数组(Padding Arrays)
- 多项式(Polynomials)
- 随机抽样 (numpy.random)
- 操作集合(Set routines)
- 排序,搜索和计数(Sorting, searching, and counting)
- Statistics
- Test Support (numpy.testing)
- Window functions
- 打包(numpy.distutils)
- NumPy Distutils 用户指南
- NumPy C-API
- NumPy 的内部
- NumPy 和 SWIG
其他文档
UFunc API
Constants
UFUNC_ERR_{HANDLER}
{HANDLER}
can be IGNORE, WARN, RAISE, or CALLUFUNC_{THING}_{ERR}
{THING}
can be MASK, SHIFT, or FPE, and{ERR}
can be DIVIDEBYZERO, OVERFLOW, UNDERFLOW, and INVALID.PyUFunc_{VALUE}
PyUFunc_One
PyUFunc_Zero
PyUFunc_MinusOne
PyUFunc_ReorderableNone
PyUFunc_None
PyUFunc_IdentityValue
Macros
NPY_LOOP_BEGIN_THREADS
Used in universal function code to only release the Python GIL if loop->obj is not true ( i.e. this is not an OBJECT array loop). Requires use of
NPY_BEGIN_THREADS_DEF
in variable declaration area.NPY_LOOP_END_THREADS
Used in universal function code to re-acquire the Python GIL if it was released (because loop->obj was not true).
Functions
PyObjectopen in new window*
PyUFunc_FromFuncAndData
(PyUFuncGenericFunction* func , void** data , char* types , int ntypes , int nin , int nout , int identity , char* name , char* doc , int unused )Create a new broadcasting universal function from required variables. Each ufunc builds around the notion of an element-by-element operation. Each ufunc object contains pointers to 1-d loops implementing the basic functionality for each supported type.
Note
The func , data , types , name , and doc arguments are not copied by
PyUFunc_FromFuncAndData
. The caller must ensure that the memory used by these arrays is not freed as long as the ufunc object is alive.Parameters:
func – Must to an array of length ntypes containing PyUFuncGenericFunction items. These items are pointers to functions that actually implement the underlying (element-by-element) function times with the following signature:
void loopfunc(char** args, npy_intp* dimensions, npy_intp* steps, void* data)
- args An array of pointers to the actual data for the input and output arrays. The input arguments are given first followed by the output arguments.
- dimensions A pointer to the size of the dimension over which this function is looping.
- steps A pointer to the number of bytes to jump to get to the next element in this dimension for each of the input and output arguments.
- data Arbitrary data (extra arguments, function names, etc. ) that can be stored with the ufunc and will be passed in when it is called.
This is an example of a func specialized for addition of doubles returning doubles.
`` c static void double_add(char **args, npy_intp *dimensions, npy_intp *steps, void *extra) { npy_intp i; npy_intp is1 = steps[0], is2 = steps[1]; npy_intp os = steps[2], n = dimensions[0]; char *i1 = args[0], *i2 = args[1], *op = args[2]; for (i = 0; i < n; i++) { *((double *)op) = *((double *)i1) + *((double *)i2); i1 += is1; i2 += is2; op += os; } }
data – Should be NULL or a pointer to an array of size ntypes . This array may contain arbitrary extra-data to be passed to the corresponding loop function in the func array.
types – Length (nin + nout) * ntypes array of char encoding the numpy.dtype.numopen in new window (built-in only) that the corresponding function in the func array accepts. For instance, for a comparison ufunc with three ntypes, two nin and one nout, where the first function accepts numpy.int32 and the the second numpy.int64, with both returning numpy.bool_, types would be (char[]) {5, 5, 0, 7, 7, 0} since NPY_INT32 is 5, NPY_INT64 is 7, and NPY_BOOL is 0.
The bit-width names can also be used (e.g. NPY_INT32, NPY_COMPLEX128 ) if desired.
Casting Rulesopen in new window will be used at runtime to find the first func callable by the input/output provided.
- ntypes – How many different data-type-specific functions the ufunc has implemented.
- nin – The number of inputs to this operation.
- nout – The number of outputs
- identity – Either PyUFunc_One, PyUFunc_Zero, PyUFunc_MinusOne, or PyUFunc_None. This specifies what should be returned when an empty array is passed to the reduce method of the ufunc. The special value PyUFunc_IdentityValue may only be used with the PyUFunc_FromFuncAndDataAndSignatureAndIdentity method, to allow an arbitrary python object to be used as the identity.
- name – The name for the ufunc as a NULL terminated string. Specifying a name of ‘add’ or ‘multiply’ enables a special behavior for integer-typed reductions when no dtype is given. If the input type is an integer (or boolean) data type smaller than the size of the numpy.int_ data type, it will be internally upcast to the numpy.int_ (or numpy.uint) data type.
- doc – Allows passing in a documentation string to be stored with the ufunc. The documentation string should not contain the name of the function or the calling signature as that will be dynamically determined from the object and available when accessing the doc attribute of the ufunc.
- unused – Unused and present for backwards compatibility of the C-API.
PyObjectopen in new window*
PyUFunc_FromFuncAndDataAndSignature
(PyUFuncGenericFunction* func , void** data , char* types , int ntypes , int nin , int nout , int identity , char* name , char* doc , int unused , char *signature )This function is very similar to PyUFunc_FromFuncAndData above, but has an extra signature argument, to define a generalized universal functions. Similarly to how ufuncs are built around an element-by-element operation, gufuncs are around subarray-by-subarray operations, the signature defining the subarrays to operate on.
Parameters:
- signature – The signature for the new gufunc. Setting it to NULL is equivalent to calling PyUFunc_FromFuncAndData. A copy of the string is made, so the passed in buffer can be freed.
PyObject* PyUFunc_FromFuncAndDataAndSignatureAndIdentity(
PyUFuncGenericFunction *func, void **data, char *types, int ntypes, int nin, int nout, int identity, char *name, char *doc, int unused, char *signature,
PyObject *identity_value)
This function is very similar to PyUFunc_FromFuncAndDataAndSignature above, but has an extra identity_value argument, to define an arbitrary identity for the ufunc when
identity
is passed asPyUFunc_IdentityValue
.Parameters:
identity_value – The identity for the new gufunc. Must be passed as NULL unless the identity argument is PyUFunc_IdentityValue. Setting it to NULL is equivalent to calling PyUFunc_FromFuncAndDataAndSignature.
int
PyUFunc_RegisterLoopForType
(PyUFuncObject* ufunc , int usertype , PyUFuncGenericFunction function , int* arg_types , void* data )This function allows the user to register a 1-d loop with an already- created ufunc to be used whenever the ufunc is called with any of its input arguments as the user-defined data-type. This is needed in order to make ufuncs work with built-in data-types. The data-type must have been previously registered with the numpy system. The loop is passed in as function . This loop can take arbitrary data which should be passed in as data . The data-types the loop requires are passed in as arg_types which must be a pointer to memory at least as large as ufunc->nargs.
int
PyUFunc_RegisterLoopForDescr
(PyUFuncObject* ufunc , PyArray_Descr* userdtype , PyUFuncGenericFunction function , PyArray_Descr** arg_dtypes , void* data )This function behaves like PyUFunc_RegisterLoopForType above, except that it allows the user to register a 1-d loop using PyArray_Descr objects instead of dtype type num values. This allows a 1-d loop to be registered for structured array data-dtypes and custom data-types instead of scalar data-types.
int
PyUFunc_ReplaceLoopBySignature
(PyUFuncObject* ufunc , PyUFuncGenericFunction newfunc , int* signature , PyUFuncGenericFunction* oldfunc )Replace a 1-d loop matching the given signature in the already-created ufunc with the new 1-d loop newfunc. Return the old 1-d loop function in oldfunc . Return 0 on success and -1 on failure. This function works only with built-in types (use
PyUFunc_RegisterLoopForType
for user-defined types). A signature is an array of data-type numbers indicating the inputs followed by the outputs assumed by the 1-d loop.int
PyUFunc_GenericFunction
(PyUFuncObject* self , PyObjectopen in new window* args , PyObjectopen in new window* kwds , PyArrayObject** mps )A generic ufunc call. The ufunc is passed in as self , the arguments to the ufunc as args and kwds . The mps argument is an array of
PyArrayObject
pointers whose values are discarded and which receive the converted input arguments as well as the ufunc outputs when success is returned. The user is responsible for managing this array and receives a new reference for each array in mps . The total number of arrays in mps is given by self ->nin + self ->nout.Returns 0 on success, -1 on error.
int
PyUFunc_checkfperr
(int errmask , PyObjectopen in new window* errobj )A simple interface to the IEEE error-flag checking support. The errmask argument is a mask of
UFUNC_MASK_{ERR}
bitmasks indicating which errors to check for (and how to check for them). The errobj must be a Python tuple with two elements: a string containing the name which will be used in any communication of error and either a callable Python object (call-back function) orPy_None
open in new window. The callable object will only be used ifUFUNC_ERR_CALL
is set as the desired error checking method. This routine manages the GIL and is safe to call even after releasing the GIL. If an error in the IEEE-compatible hardware is determined a -1 is returned, otherwise a 0 is returned.void
PyUFunc_clearfperr
()Clear the IEEE error flags.
void
PyUFunc_GetPyValues
(char* name , int* bufsize , int* errmask , PyObjectopen in new window** errobj )Get the Python values used for ufunc processing from the thread-local storage area unless the defaults have been set in which case the name lookup is bypassed. The name is placed as a string in the first element of *errobj . The second element is the looked-up function to call on error callback. The value of the looked-up buffer-size to use is passed into bufsize , and the value of the error mask is placed into errmask .
Generic functions
At the core of every ufunc is a collection of type-specific functions that defines the basic functionality for each of the supported types. These functions must evaluate the underlying function times. Extra-data may be passed in that may be used during the calculation. This feature allows some general functions to be used as these basic looping functions. The general function has all the code needed to point variables to the right place and set up a function call. The general function assumes that the actual function to call is passed in as the extra data and calls it with the correct values. All of these functions are suitable for placing directly in the array of functions stored in the functions member of the PyUFuncObject structure.
void
PyUFunc_f_f_As_d_d
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_d_d
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_f_f
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_g_g
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_F_F_As_D_D
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_F_F
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_D_D
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_G_G
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_e_e
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_e_e_As_f_f
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_e_e_As_d_d
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )Type specific, core 1-d functions for ufuncs where each calculation is obtained by calling a function taking one input argument and returning one output. This function is passed in
func
. The letters correspond to dtypechar’s of the supported data types (e
- half,f
- float,d
- double,g
- long double,F
- cfloat,D
- cdouble,G
- clongdouble). The argument func must support the same signature. The _As_X_X variants assume ndarray’s of one data type but cast the values to use an underlying function that takes a different data type. Thus,PyUFunc_f_f_As_d_d
uses ndarrays of data typeNPY_FLOAT
but calls out to a C-function that takes double and returns double.void
PyUFunc_ff_f_As_dd_d
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_ff_f
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_dd_d
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_gg_g
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_FF_F_As_DD_D
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_DD_D
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_FF_F
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_GG_G
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_ee_e
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_ee_e_As_ff_f
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_ee_e_As_dd_d
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )Type specific, core 1-d functions for ufuncs where each calculation is obtained by calling a function taking two input arguments and returning one output. The underlying function to call is passed in as func . The letters correspond to dtypechar’s of the specific data type supported by the general-purpose function. The argument
func
must support the corresponding signature. The_As_XX_X
variants assume ndarrays of one data type but cast the values at each iteration of the loop to use the underlying function that takes a different data type.void
PyUFunc_O_O
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )void
PyUFunc_OO_O
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )One-input, one-output, and two-input, one-output core 1-d functions for the
NPY_OBJECT
data type. These functions handle reference count issues and return early on error. The actual function to call is func and it must accept calls with the signature(PyObject*) (PyObject*)
forPyUFunc_O_O
or(PyObject*)(PyObject *, PyObject *)
forPyUFunc_OO_O
.void
PyUFunc_O_O_method
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )This general purpose 1-d core function assumes that func is a string representing a method of the input object. For each iteration of the loop, the Python object is extracted from the array and its func method is called returning the result to the output array.
void
PyUFunc_OO_O_method
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )This general purpose 1-d core function assumes that func is a string representing a method of the input object that takes one argument. The first argument in args is the method whose function is called, the second argument in args is the argument passed to the function. The output of the function is stored in the third entry of args .
void
PyUFunc_On_Om
(char** args , npy_intp* dimensions , npy_intp* steps , void* func )This is the 1-d core function used by the dynamic ufuncs created by umath.frompyfunc(function, nin, nout). In this case func is a pointer to a
PyUFunc_PyFuncData
structure which has definitionPyUFunc_PyFuncData
typedef struct { int nin; int nout; PyObject *callable; } PyUFunc_PyFuncData;
At each iteration of the loop, the nin input objects are extracted from their object arrays and placed into an argument tuple, the Python callable is called with the input arguments, and the nout outputs are placed into their object arrays.
Importing the API
PY_UFUNC_UNIQUE_SYMBOL
NO_IMPORT_UFUNC
void
import_ufunc
(void)These are the constants and functions for accessing the ufunc C-API from extension modules in precisely the same way as the array C-API can be accessed. The
import_ufunc
() function must always be called (in the initialization subroutine of the extension module). If your extension module is in one file then that is all that is required. The other two constants are useful if your extension module makes use of multiple files. In that case, definePY_UFUNC_UNIQUE_SYMBOL
to something unique to your code and then in source files that do not contain the module initialization function but still need access to the UFUNC API, definePY_UFUNC_UNIQUE_SYMBOL
to the same name used previously and also defineNO_IMPORT_UFUNC
.The C-API is actually an array of function pointers. This array is created (and pointed to by a global variable) by import_ufunc. The global variable is either statically defined or allowed to be seen by other files depending on the state of
PY_UFUNC_UNIQUE_SYMBOL
andNO_IMPORT_UFUNC
.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论