返回介绍

下载

编译与部署

开始使用

操作手册

最佳实践

扩展功能

设计文档

SQL 手册

开发者手册

Apache 社区

Spark Doris Connector

发布于 2021-09-30 01:42:43 字数 13034 浏览 1809 评论 0 收藏 0

Spark Doris Connector 可以支持通过 Spark 读取 Doris 中存储的数据,也支持通过Spark写入数据到Doris。

  • 支持从Doris中读取数据
  • 支持Spark DataFrame批量/流式 写入Doris
  • 可以将Doris表映射为DataFrame或者RDD,推荐使用DataFrame
  • 支持在Doris端完成数据过滤,减少数据传输量。

版本兼容

ConnectorSparkDorisJavaScala
1.0.02.x0.12+82.11
1.0.03.x0.12.+82.12

编译与安装

extension/spark-doris-connector/ 源码目录下执行:

注意:

  1. 这里如果你没有整体编译过 doris 源码,需要首先编译一次 Doris 源码,不然会出现 thrift 命令找不到的情况,需要到 incubator-doris 目录下执行 sh build.sh
  2. 建议在 doris 的 docker 编译环境 apache/incubator-doris:build-env-1.2 下进行编译,因为 1.3 下面的JDK 版本是 11,会存在编译问题。
sh build.sh 3  ## spark 3.x版本,默认是3.1.2
sh build.sh 2  ## soark 2.x版本,默认是2.3.4

编译成功后,会在 output/ 目录下生成文件 doris-spark-1.0.0-SNAPSHOT.jar。将此文件复制到 SparkClassPath 中即可使用 Spark-Doris-Connector。例如,Local 模式运行的 Spark,将此文件放入 jars/ 文件夹下。Yarn集群模式运行的Spark,则将此文件放入预部署包中。

使用示例

读取

SQL

CREATE TEMPORARY VIEW spark_doris
USING doris
OPTIONS(
  "table.identifier"="$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME",
  "fenodes"="$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT",
  "user"="$YOUR_DORIS_USERNAME",
  "password"="$YOUR_DORIS_PASSWORD"
);

SELECT * FROM spark_doris;

DataFrame

val dorisSparkDF = spark.read.format("doris")
  .option("doris.table.identifier", "$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME")
    .option("doris.fenodes", "$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT")
  .option("user", "$YOUR_DORIS_USERNAME")
  .option("password", "$YOUR_DORIS_PASSWORD")
  .load()

dorisSparkDF.show(5)

RDD

import org.apache.doris.spark._
val dorisSparkRDD = sc.dorisRDD(
  tableIdentifier = Some("$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME"),
  cfg = Some(Map(
    "doris.fenodes" -> "$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT",
    "doris.request.auth.user" -> "$YOUR_DORIS_USERNAME",
    "doris.request.auth.password" -> "$YOUR_DORIS_PASSWORD"
  ))
)

dorisSparkRDD.collect()

写入

DataFrame(batch/stream)

## batch sink
val mockDataDF = List(
  (3, "440403001005", "21.cn"),
  (1, "4404030013005", "22.cn"),
  (33, null, "23.cn")
).toDF("id", "mi_code", "mi_name")
mockDataDF.show(5)

mockDataDF.write.format("doris")
  .option("doris.table.identifier", "$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME")
    .option("doris.fenodes", "$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT")
  .option("user", "$YOUR_DORIS_USERNAME")
  .option("password", "$YOUR_DORIS_PASSWORD")
  .save()

## stream sink(StructuredStreaming)
val kafkaSource = spark.readStream
  .option("kafka.bootstrap.servers", "$YOUR_KAFKA_SERVERS")
  .option("startingOffsets", "latest")
  .option("subscribe", "$YOUR_KAFKA_TOPICS")
  .format("kafka")
  .load()
kafkaSource.selectExpr("CAST(key AS STRING)", "CAST(value as STRING)")
  .writeStream
  .format("doris")
  .option("checkpointLocation", "$YOUR_CHECKPOINT_LOCATION")
  .option("doris.table.identifier", "$YOUR_DORIS_DATABASE_NAME.$YOUR_DORIS_TABLE_NAME")
    .option("doris.fenodes", "$YOUR_DORIS_FE_HOSTNAME:$YOUR_DORIS_FE_RESFUL_PORT")
  .option("user", "$YOUR_DORIS_USERNAME")
  .option("password", "$YOUR_DORIS_PASSWORD")
  .start()
  .awaitTermination()

配置

通用配置项

KeyDefault ValueComment
doris.fenodes--Doris FE http 地址,支持多个地址,使用逗号分隔
doris.table.identifier--Doris 表名,如:db1.tbl1
doris.request.retries3向Doris发送请求的重试次数
doris.request.connect.timeout.ms30000向Doris发送请求的连接超时时间
doris.request.read.timeout.ms30000向Doris发送请求的读取超时时间
doris.request.query.timeout.s3600查询doris的超时时间,默认值为1小时,-1表示无超时限制
doris.request.tablet.sizeInteger.MAX_VALUE一个RDD Partition对应的Doris Tablet个数。
此数值设置越小,则会生成越多的Partition。从而提升Spark侧的并行度,但同时会对Doris造成更大的压力。
doris.batch.size1024一次从BE读取数据的最大行数。增大此数值可减少Spark与Doris之间建立连接的次数。
从而减轻网络延迟所带来的的额外时间开销。
doris.exec.mem.limit2147483648单个查询的内存限制。默认为 2GB,单位为字节
doris.deserialize.arrow.asyncfalse是否支持异步转换Arrow格式到spark-doris-connector迭代所需的RowBatch
doris.deserialize.queue.size64异步转换Arrow格式的内部处理队列,当doris.deserialize.arrow.async为true时生效

SQL 和 Dataframe 专有配置

KeyDefault ValueComment
user--访问Doris的用户名
password--访问Doris的密码
doris.filter.query.in.max.count100谓词下推中,in表达式value列表元素最大数量。超过此数量,则in表达式条件过滤在Spark侧处理。

RDD 专有配置

KeyDefault ValueComment
doris.request.auth.user--访问Doris的用户名
doris.request.auth.password--访问Doris的密码
doris.read.field--读取Doris表的列名列表,多列之间使用逗号分隔
doris.filter.query--过滤读取数据的表达式,此表达式透传给Doris。Doris使用此表达式完成源端数据过滤。

Doris 和 Spark 列类型映射关系

Doris TypeSpark Type
NULL_TYPEDataTypes.NullType
BOOLEANDataTypes.BooleanType
TINYINTDataTypes.ByteType
SMALLINTDataTypes.ShortType
INTDataTypes.IntegerType
BIGINTDataTypes.LongType
FLOATDataTypes.FloatType
DOUBLEDataTypes.DoubleType
DATEDataTypes.StringType1
DATETIMEDataTypes.StringType1
BINARYDataTypes.BinaryType
DECIMALDecimalType
CHARDataTypes.StringType
LARGEINTDataTypes.StringType
VARCHARDataTypes.StringType
DECIMALV2DecimalType
TIMEDataTypes.DoubleType
HLLUnsupported datatype
  • 注:Connector中,将DATEDATETIME映射为String。由于Doris底层存储引擎处理逻辑,直接使用时间类型时,覆盖的时间范围无法满足需求。所以使用 String 类型直接返回对应的时间可读文本。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文