- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
Exceptions
When a function cannot proceed normally, what we would like to do is just stop what we are doing and immediately jump back to a place that knows how to handle the problem. This is what exception handling does.
Exceptions are a mechanism that make it possible for code that runs into a problem to raise (or throw) an exception, which is simply a value. Raising an exception somewhat resembles a super-charged return from a function: it jumps out of not just the current function but also out of its callers, all the way down to the first call that started the current execution. This is called unwinding the stack. You may remember the stack of function calls that was mentioned in Chapter 3 . An exception zooms down this stack, throwing away all the call contexts it encounters.
If exceptions always zoomed right down to the bottom of the stack, they would not be of much use. They would just provide a novel way to blow up your program. Their power lies in the fact that you can set “obstacles” along the stack to catch the exception as it is zooming down. Then you can do something with it, after which the program continues running at the point where the exception was caught.
Here’s an example:
function promptDirection(question) { var result = prompt(question, ""); if (result.toLowerCase() == "left") return "L"; if (result.toLowerCase() == "right") return "R"; throw new Error("Invalid direction: " + result); } function look() { if (promptDirection("Which way?") == "L") return "a house"; else return "two angry bears"; } try { console.log("You see", look()); } catch (error) { console.log("Something went wrong: " + error); }
The throw
keyword is used to raise an exception. Catching one is done by wrapping a piece of code in a try
block, followed by the keyword catch
. When the code in the try
block causes an exception to be raised, the catch
block is evaluated. The variable name (in parentheses) after catch
will be bound to the exception value. After the catch
block finishes—or if the try
block finishes without problems—control proceeds beneath the entire try/catch
statement.
In this case, we used the Error
constructor to create our exception value. This is a standard JavaScript constructor that creates an object with a message
property. In modern JavaScript environments, instances of this constructor also gather information about the call stack that existed when the exception was created, a so-called stack trace. This information is stored in the stack
property and can be helpful when trying to debug a problem: it tells us the precise function where the problem occurred and which other functions led up to the call that failed.
Note that the function look
completely ignores the possibility that promptDirection
might go wrong. This is the big advantage of exceptions—error-handling code is necessary only at the point where the error occurs and at the point where it is handled. The functions in between can forget all about it.
Well, almost...
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论