返回介绍

Computational problems in statistics

发布于 2025-02-25 23:43:40 字数 1199 浏览 0 评论 0 收藏 0

Starting with some data (which may come from an experiment or a simulation), we often use statsitics to answer a few typcical questions:

  • How well does the data match some assumed (null) distribution [hypotehsis testing]?
  • If it doesn’t match well but we think it is likely to belong to a known family of distributions, can we estiamte the parameters [point estimate]?
  • How accurate are the parameter estimates [interval estimates]?
  • Can we estimate the entire distribution [function estimation or approximation]?

Most commonly, the computational approaches used to address these questions will involve

  • minimization off residuals (e.g. least squeares)
    • Numerical optimization
  • maximum likelihood
    • Numerical optimization
    • Expectation maximization (EM)
  • Monte Carlo methods
    • Simulation of null distribution (bootstrap, permutation)
    • Estimation of posterior density (Monte Carlo integration, MCMC, EM)

Rarely (i.e. textbook examples), we can find a closed form solution to these problems.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文