数学基础
- 线性代数
- 概率论与随机过程
- 数值计算
- 蒙特卡洛方法与 MCMC 采样
- 机器学习方法概论
统计学习
深度学习
- 深度学习简介
- 深度前馈网络
- 反向传播算法
- 正则化
- 深度学习中的最优化问题
- 卷积神经网络
- CNN:图像分类
- 循环神经网络 RNN
- Transformer
- 一、Transformer [2017]
- 二、Universal Transformer [2018]
- 三、Transformer-XL [2019]
- 四、GPT1 [2018]
- 五、GPT2 [2019]
- 六、GPT3 [2020]
- 七、OPT [2022]
- 八、BERT [2018]
- 九、XLNet [2019]
- 十、RoBERTa [2019]
- 十一、ERNIE 1.0 [2019]
- 十二、ERNIE 2.0 [2019]
- 十三、ERNIE 3.0 [2021]
- 十四、ERNIE-Huawei [2019]
- 十五、MT-DNN [2019]
- 十六、BART [2019]
- 十七、mBART [2020]
- 十八、SpanBERT [2019]
- 十九、ALBERT [2019]
- 二十、UniLM [2019]
- 二十一、MASS [2019]
- 二十二、MacBERT [2019]
- 二十三、Fine-Tuning Language Models from Human Preferences [2019]
- 二十四 Learning to summarize from human feedback [2020]
- 二十五、InstructGPT [2022]
- 二十六、T5 [2020]
- 二十七、mT5 [2020]
- 二十八、ExT5 [2021]
- 二十九、Muppet [2021]
- 三十、Self-Attention with Relative Position Representations [2018]
- 三十一、USE [2018]
- 三十二、Sentence-BERT [2019]
- 三十三、SimCSE [2021]
- 三十四、BERT-Flow [2020]
- 三十五、BERT-Whitening [2021]
- 三十六、Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings [2019]
- 三十七、CERT [2020]
- 三十八、DeCLUTR [2020]
- 三十九、CLEAR [2020]
- 四十、ConSERT [2021]
- 四十一、Sentence-T5 [2021]
- 四十二、ULMFiT [2018]
- 四十三、Scaling Laws for Neural Language Models [2020]
- 四十四、Chinchilla [2022]
- 四十七、GLM-130B [2022]
- 四十八、GPT-NeoX-20B [2022]
- 四十九、Bloom [2022]
- 五十、PaLM [2022] (粗读)
- 五十一、PaLM2 [2023](粗读)
- 五十二、Self-Instruct [2022]
- 句子向量
- 词向量
- 传统CTR 预估模型
- CTR 预估模型
- 一、DSSM [2013]
- 二、FNN [2016]
- 三、PNN [2016]
- 四、DeepCrossing [2016]
- 五、Wide 和 Deep [2016]
- 六、DCN [2017]
- 七、DeepFM [2017]
- 八、NFM [2017]
- 九、AFM [2017]
- 十、xDeepFM [2018]
- 十一、ESMM [2018]
- 十二、DIN [2017]
- 十三、DIEN [2019]
- 十四、DSIN [2019]
- 十五、DICM [2017]
- 十六、DeepMCP [2019]
- 十七、MIMN [2019]
- 十八、DMR [2020]
- 十九、MiNet [2020]
- 二十、DSTN [2019]
- 二十一、BST [2019]
- 二十二、SIM [2020]
- 二十三、ESM2 [2019]
- 二十四、MV-DNN [2015]
- 二十五、CAN [2020]
- 二十六、AutoInt [2018]
- 二十七、Fi-GNN [2019]
- 二十八、FwFM [2018]
- 二十九、FM2 [2021]
- 三十、FiBiNET [2019]
- 三十一、AutoFIS [2020]
- 三十三、AFN [2020]
- 三十四、FGCNN [2019]
- 三十五、AutoCross [2019]
- 三十六、InterHAt [2020]
- 三十七、xDeepInt [2023]
- 三十九、AutoDis [2021]
- 四十、MDE [2020]
- 四十一、NIS [2020]
- 四十二、AutoEmb [2020]
- 四十三、AutoDim [2021]
- 四十四、PEP [2021]
- 四十五、DeepLight [2021]
- 图的表达
- 一、DeepWalk [2014]
- 二、LINE [2015]
- 三、GraRep [2015]
- 四、TADW [2015]
- 五、DNGR [2016]
- 六、Node2Vec [2016]
- 七、WALKLETS [2016]
- 八、SDNE [2016]
- 九、CANE [2017]
- 十、EOE [2017]
- 十一、metapath2vec [2017]
- 十二、GraphGAN [2018]
- 十三、struc2vec [2017]
- 十四、GraphWave [2018]
- 十五、NetMF [2017]
- 十六、NetSMF [2019]
- 十七、PTE [2015]
- 十八、HNE [2015]
- 十九、AANE [2017]
- 二十、LANE [2017]
- 二十一、MVE [2017]
- 二十二、PMNE [2017]
- 二十三、ANRL [2018]
- 二十四、DANE [2018]
- 二十五、HERec [2018]
- 二十六、GATNE [2019]
- 二十七、MNE [2018]
- 二十八、MVN2VEC [2018]
- 二十九、SNE [2018]
- 三十、ProNE [2019]
- Graph Embedding 综述
- 图神经网络
- 一、GNN [2009]
- 二、Spectral Networks 和 Deep Locally Connected Networks [2013]
- 三、Fast Localized Spectral Filtering On Graph [2016]
- 四、GCN [2016]
- 五、神经图指纹 [2015]
- 六、GGS-NN [2016]
- 七、PATCHY-SAN [2016]
- 八、GraphSAGE [2017]
- 九、GAT [2017]
- 十、R-GCN [2017]
- 十一、 AGCN [2018]
- 十二、FastGCN [2018]
- 十三、PinSage [2018]
- 十四、GCMC [2017]
- 十五、JK-Net [2018]
- 十六、PPNP [2018]
- 十七、VRGCN [2017]
- 十八、ClusterGCN [2019]
- 十九、LDS-GNN [2019]
- 二十、DIAL-GNN [2019]
- 二十一、HAN [2019]
- 二十二、HetGNN [2019]
- 二十三、HGT [2020]
- 二十四、GPT-GNN [2020]
- 二十五、Geom-GCN [2020]
- 二十六、Graph Network [2018]
- 二十七、GIN [2019]
- 二十八、MPNN [2017]
- 二十九、UniMP [2020]
- 三十、Correct and Smooth [2020]
- 三十一、LGCN [2018]
- 三十二、DGCNN [2018]
- 三十三、AS-GCN
- 三十四、DGI [2018]
- 三十五、DIFFPOLL [2018]
- 三十六、DCNN [2016]
- 三十七、IN [2016]
- 图神经网络 2
- 图神经网络 3
- 推荐算法(传统方法)
- 一、Tapestry [1992]
- 二、GroupLens [1994]
- 三、ItemBased CF [2001]
- 四、Amazon I-2-I CF [2003]
- 五、Slope One Rating-Based CF [2005]
- 六、Bipartite Network Projection [2007]
- 七、Implicit Feedback CF [2008]
- 八、PMF [2008]
- 九、SVD++ [2008]
- 十、MMMF 扩展 [2008]
- 十一、OCCF [2008]
- 十二、BPR [2009]
- 十三、MF for RS [2009]
- 十四、 Netflix BellKor Solution [2009]
- 推荐算法(神经网络方法 1)
- 一、MIND [2019](用于召回)
- 二、DNN For YouTube [2016]
- 三、Recommending What Video to Watch Next [2019]
- 四、ESAM [2020]
- 五、Facebook Embedding Based Retrieval [2020](用于检索)
- 六、Airbnb Search Ranking [2018]
- 七、MOBIUS [2019](用于召回)
- 八、TDM [2018](用于检索)
- 九、DR [2020](用于检索)
- 十、JTM [2019](用于检索)
- 十一、Pinterest Recommender System [2017]
- 十二、DLRM [2019]
- 十三、Applying Deep Learning To Airbnb Search [2018]
- 十四、Improving Deep Learning For Airbnb Search [2020]
- 十五、HOP-Rec [2018]
- 十六、NCF [2017]
- 十七、NGCF [2019]
- 十八、LightGCN [2020]
- 十九、Sampling-Bias-Corrected Neural Modeling [2019](检索)
- 二十、EGES [2018](Matching 阶段)
- 二十一、SDM [2019](Matching 阶段)
- 二十二、COLD [2020 ] (Pre-Ranking 模型)
- 二十三、ComiRec [2020](https://www.wenjiangs.com/doc/0b4e1736-ac78)
- 二十四、EdgeRec [2020]
- 二十五、DPSR [2020](检索)
- 二十六、PDN [2021](mathcing)
- 二十七、时空周期兴趣学习网络ST-PIL [2021]
- 推荐算法之序列推荐
- 一、FPMC [2010]
- 二、GRU4Rec [2015]
- 三、HRM [2015]
- 四、DREAM [2016]
- 五、Improved GRU4Rec [2016]
- 六、NARM [2017]
- 七、HRNN [2017]
- 八、RRN [2017]
- 九、Caser [2018]
- 十、p-RNN [2016]
- 十一、GRU4Rec Top-k Gains [2018]
- 十二、SASRec [2018]
- 十三、RUM [2018]
- 十四、SHAN [2018]
- 十五、Phased LSTM [2016]
- 十六、Time-LSTM [2017]
- 十七、STAMP [2018]
- 十八、Latent Cross [2018]
- 十九、CSRM [2019]
- 二十、SR-GNN [2019]
- 二十一、GC-SAN [2019]
- 二十二、BERT4Rec [2019]
- 二十三、MCPRN [2019]
- 二十四、RepeatNet [2019]
- 二十五、LINet(2019)
- 二十六、NextItNet [2019]
- 二十七、GCE-GNN [2020]
- 二十八、LESSR [2020]
- 二十九、HyperRec [2020]
- 三十、DHCN [2021]
- 三十一、TiSASRec [2020]
- 推荐算法(综述)
- 多任务学习
- 系统架构
- 实践方法论
- 深度强化学习 1
- 自动代码生成
工具
- CRF
- lightgbm
- xgboost
- scikit-learn
- spark
- numpy
- matplotlib
- pandas
- huggingface_transformer
- 一、Tokenizer
- 二、Datasets
- 三、Model
- 四、Trainer
- 五、Evaluator
- 六、Pipeline
- 七、Accelerate
- 八、Autoclass
- 九、应用
- 十、Gradio
Scala
- 环境搭建
- 基础知识
- 函数
- 类
- 样例类和模式匹配
- 测试和注解
- 集合 collection(一)
- 集合collection(二)
- 集成 Java
- 并发
三、EM算法与高斯混合模型
3.1 高斯混合模型
高斯混合模型(
$ P(y;\theta)=\sum_{k=1}^{K}\alpha_k\phi(y;\theta_k) $Gaussian mixture model,GMM
):指的是具有下列形式的概率分布模型:其中 $ MathJax-Element-236 $ 是系数,满足 :
- $ MathJax-Element-214 $ 。
- $ MathJax-Element-228 $ 是高斯分布密度函数,称作第 $ MathJax-Element-258 $ 个分模型, $ MathJax-Element-216 $ :
如果用其他的概率分布密度函数代替上式中的高斯分布密度函数,则称为一般混合模型。
3.2 参数估计
假设观察数据 $ MathJax-Element-832 $ 由高斯混合模型 $ MathJax-Element-220 $ 生成,其中 $ MathJax-Element-221 $ 。
可以通过
EM
算法估计高斯混合模型的参数 $ MathJax-Element-353 $ 。可以设想观察数据 $ MathJax-Element-259 $ 是这样产生的:
- 首先以概率 $ MathJax-Element-236 $ 选择第 $ MathJax-Element-227 $ 个分模型 $ MathJax-Element-228 $ 。
- 然后以第 $ MathJax-Element-227 $ 个分模型的概率分布 $ MathJax-Element-228 $ 生成观察数据 $ MathJax-Element-259 $ 。
这样,观察数据 $ MathJax-Element-259 $ 是已知的,观测数据 $ MathJax-Element-259 $ 来自哪个分模型是未知的。
对观察变量 $ MathJax-Element-55 $ ,定义隐变量 $ MathJax-Element-476 $ ,其中 $ MathJax-Element-1669 $ 。
完全数据的对数似然函数为:
$ P(y=y_j,z=k;\theta)=\alpha_k\frac{1}{\sqrt{2\pi}\sigma_k}\exp\left(-\frac{(y_j-\mu_k)^{2}}{2\sigma_k^{2}}\right) $其对数为:
$ \log P(y=y_j,z=k;\theta)=\log \alpha_k-\log\sqrt{2\pi}\sigma_k -\frac{(y_j-\mu_k)^{2}}{2\sigma_k^{2}} $后验概率为:
$ P(z=k\mid y=y_j;\theta^{})=\frac{\alpha_k\frac{1}{\sqrt{2\pi}\sigma_k^{}}\exp\left(-\frac{(y_j-\mu_k^{})^{2}}{2\sigma_k^{^{}2}}\right)}{\sum_{t=1}^K\alpha_t\frac{1}{\sqrt{2\pi}\sigma_t^{}}\exp\left(-\frac{(y_j-\mu_t^{})^{2}}{2\sigma_t^{^{}2}}\right)} $即: $ MathJax-Element-1875 $ 。
则 $ MathJax-Element-358 $ 函数为:
$ Q(\theta,\theta^{})=\sum_{j=1}^N\left(\sum_z P(z\mid y=y_j;\theta^{})\log P(y=y_j,z;\theta) \right)\\ =\sum_{j=1}^N\sum_{k=1}^K P(z=k\mid y=y_j;\theta^{})\left(\log \alpha_k-\log\sqrt{2\pi}\sigma_k -\frac{(y_j-\mu_k)^{2}}{2\sigma_k^{2}}\right) $求极大值: $ MathJax-Element-1964 $ 。
根据偏导数为 0,以及 $ MathJax-Element-255 $ 得到:
$ MathJax-Element-236 $ :
$ \alpha_k^{}=\frac{n_k}{N} $其中: $ MathJax-Element-2017 $ ,其物理意义为:所有的观测数据 $ MathJax-Element-852 $ 中,产生自第 $ MathJax-Element-258 $ 个分模型的观测数据的数量。
$ MathJax-Element-2033 $ :
$ \mu_k^{}=\frac{\overline {Sum}_k}{n_k} $其中: $ MathJax-Element-2182 $ ,其物理意义为:所有的观测数据 $ MathJax-Element-852 $ 中,产生自第 $ MathJax-Element-258 $ 个分模型的观测数据的总和。
$ MathJax-Element-2118 $ :
$ \sigma_k^{2}=\frac{\overline {Var}_k}{n_k} $其中: $ MathJax-Element-2208 $ ,其物理意义为:所有的观测数据 $ MathJax-Element-852 $ 中,产生自第 $ MathJax-Element-258 $ 个分模型的观测数据,偏离第 $ MathJax-Element-258 $ 个模型的均值( $ MathJax-Element-2219 $ )的平方和。
高斯混合模型参数估计的
EM
算法:输入:
- 观察数据 $ MathJax-Element-832 $
- 高斯混合模型的分量数 $ MathJax-Element-257 $
输出:高斯混合模型参数 $ MathJax-Element-2311 $
算法步骤:
随机初始化参数 $ MathJax-Element-350 $ 。
根据 $ MathJax-Element-352 $ 迭代求解 $ MathJax-Element-357 $ ,停止条件为:对数似然函数值或者参数估计值收敛。
$ \alpha_k^{}=\frac{n_k}{N},\;\mu_k^{}=\frac{\overline {Sum}_k}{n_k},\;\sigma_k^{2}=\frac{\overline {Var}_k}{n_k} $其中:
$ MathJax-Element-2017 $ 。
其物理意义为:所有的观测数据 $ MathJax-Element-852 $ 中,产生自第 $ MathJax-Element-258 $ 个分模型的观测数据的数量。
$ MathJax-Element-2182 $ 。
其物理意义为:所有的观测数据 $ MathJax-Element-852 $ 中,产生自第 $ MathJax-Element-258 $ 个分模型的观测数据的总和。
$ MathJax-Element-2208 $ 。
其物理意义为:所有的观测数据 $ MathJax-Element-852 $ 中,产生自第 $ MathJax-Element-258 $ 个分模型的观测数据,偏离第 $ MathJax-Element-258 $ 个模型的均值( $ MathJax-Element-2219 $ )的平方和。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论