2.8 奇异值分解
在第2.7节,我们探讨了如何将矩阵分解成特征向量和特征值。还有另一种分解矩阵的方法,称为奇异值分解(singular value decomposition,SVD),是将矩阵分解为奇异向量(singular vector)和奇异值(singular value)。通过奇异值分解,我们会得到一些与特征分解相同类型的信息。然而,奇异值分解有更广泛的应用。每个实数矩阵都有一个奇异值分解,但不一定都有特征分解。例如,非方阵的矩阵没有特征分解,这时我们只能使用奇异值分解。
回想一下,我们使用特征分解去分析矩阵A时,得到特征向量构成的矩阵V和特征值构成的向量λ,我们可以重新将A写作
奇异值分解是类似的,只不过这回我们将矩阵A分解成三个矩阵的乘积:
假设A是一个m×n的矩阵,那么U是一个m×m的矩阵,D是一个m×n的矩阵,V是一个n×n矩阵。
这些矩阵中的每一个经定义后都拥有特殊的结构。矩阵U和V都定义为正交矩阵,而矩阵D定义为对角矩阵。注意,矩阵D不一定是方阵。
对角矩阵D对角线上的元素称为矩阵A的奇异值(singular value)。矩阵U的列向量称为左奇异向量(left singular vector),矩阵V的列向量称右奇异向量(right singular vector)。
事实上,我们可以用与A相关的特征分解去解释A的奇异值分解。A的左奇异向量(left singular vector)是的特征向量。A的右奇异向量(right singular vector)是的特征向量。A的非零奇异值是特征值的平方根,同时也是特征值的平方根。
SVD最有用的一个性质可能是拓展矩阵求逆到非方矩阵上。我们将在下一节中探讨。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论