1. Synchronize 关键字原理
众所周知 Synchronize
关键字是解决并发问题常用解决方案,有以下三种使用方式:
- 同步普通方法,锁的是当前对象。
- 同步静态方法,锁的是当前
Class
对象。 - 同步块,锁的是
{}
中的对象。
实现原理:JVM
是通过进入、退出对象监视器( Monitor
) 来实现对方法、同步块的同步的。
具体实现是在编译之后在同步方法调用前加入一个 monitor.enter
指令,在退出方法和异常处插入 monitor.exit
的指令。
其本质就是对一个对象监视器( Monitor
) 进行获取,而这个获取过程具有排他性从而达到了同一时刻只能一个线程访问的目的。
而对于没有获取到锁的线程将会阻塞到方法入口处,直到获取锁的线程 monitor.exit
之后才能尝试继续获取锁。
流程图如下:
通过一段代码来演示:
public static void main(String[] args) {
synchronized (Synchronize.class){
System.out.println("Synchronize");
}
}
使用 javap -c Synchronize
可以查看编译之后的具体信息。
public class com.crossoverjie.synchronize.Synchronize {
public com.crossoverjie.synchronize.Synchronize();
Code:
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
public static void main(java.lang.String[]);
Code:
0: ldc #2 // class com/crossoverjie/synchronize/Synchronize
2: dup
3: astore_1
**4: monitorenter**
5: getstatic #3 // Field java/lang/System.out:Ljava/io/PrintStream;
8: ldc #4 // String Synchronize
10: invokevirtual #5 // Method java/io/PrintStream.println:(Ljava/lang/String;)V
13: aload_1
**14: monitorexit**
15: goto 23
18: astore_2
19: aload_1
20: monitorexit
21: aload_2
22: athrow
23: return
Exception table:
from to target type
5 15 18 any
18 21 18 any
}
可以看到在同步块的入口和出口分别有 monitorenter,monitorexit
指令。
Java 对象头和 monitor 是实现 synchronized 的基础
Java 对象头
- synchronized 用的锁是存在 Java 对象头里的,那么什么是 Java 对象头呢?Hotspot 虚拟机的对象头主要包括两部分数据: Mark Word(标记字段)、Klass Pointer(类型指针)。其中 Klass Point 是是对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例,Mark Word 用于存储对象自身的运行时数据,它是实现轻量级锁和偏向锁的关键
Mark Word
- Mark Word 用于存储对象自身的运行时数据,如哈希码(HashCode)、GC 分代年龄、锁状态标志、线程持有的锁、偏向线程 ID、偏向时间戳等等。Java 对象头一般占有两个机器码,但是如果对象是数组类型,则需要三个机器码,因为 JVM 虚拟机可以通过 Java 对象的元数据信 息确定 Java 对象的大小,但是无法从数组的元数据来确认数组的大小,所以用一块来记录数组长度。
- 对象头信息是与对象自身定义的数据无关的额外存储成本,但是考虑到虚拟机的空间效率,Mark Word 被设计成一个非固定的数据结构以便在极小的空间内存存储尽量多的数据,它会根据对象的状态复用自己的存储空间,也就是说,Mark Word 会随着程序的运行发生变化,变化状态如下(32 位虚拟机):
Monitor
- 什么是 Monitor?我们可以把它理解为一个同步工具,也可以描述为一种同步机制,它通常被描述为一个对象。
- 与一切皆对象一样,所有的 Java 对象是天生的 Monitor,每一个 Java 对象都有成为 Monitor 的潜质,因为在 Java 的设计中 ,每一个 Java 对象自打娘胎里出来就带了一把看不见的锁,它叫做内部锁或者 Monitor 锁。
- Monitor 是线程私有的数据结构,每一个线程都有一个可用 monitor record 列表,同时还有一个全局的可用列表。
- 每一个被锁住的对象都会和一个 monitor 关联(对象头的 MarkWord 中的 LockWord 指向 monitor 的起始地址),同时 monitor 中有一个 Owner 字段存放拥有该锁的线程的唯一标识,表示该锁被这个线程占用。
- Owner:初始时为 NULL 表示当前没有任何线程拥有该 monitor record,当线程成功拥有该锁后保存线程唯一标识,当锁被释放时又设置为 NULL;
- EntryQ:关联一个系统互斥锁(semaphore),阻塞所有试图锁住 monitor record 失败的线程
- RcThis:表示 blocked 或 waiting 在该 monitor record 上的所有线程的个数。
- Nest:用来实现重入锁的计数。
- HashCode:保存从对象头拷贝过来的 HashCode 值(可能还包含 GC age)。
- Candidate:用来避免不必要的阻塞或等待线程唤醒,因为每一次只有一个线程能够成功拥有锁,如果每次前一个释放锁的线程唤醒所有正在阻塞 或等待的线程,会引起不必要的上下文切换(从阻塞到就绪然后因为竞争锁失败又被阻塞)从而导致性能严重下降。Candidate 只有两种可能的值 0 表示没 有需要唤醒的线程 1 表示要唤醒一个继任线程来竞争锁。
jdk1.6 开始对锁锁优化
synchronize
很多都称之为重量锁,JDK1.6
中对synchronize
进行了各种优化,为了能减少获取和释放锁带来的消耗引入了偏向锁
和轻量锁
。- 锁主要存在四中状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。
轻量锁
当代码进入同步块时,如果同步对象为无锁状态时,当前线程会在栈帧中创建一个锁记录( Lock Record
) 区域,同时将锁对象的对象头中 Mark Word
拷贝到锁记录中,再尝试使用 CAS
将 Mark Word
更新为指向锁记录的指针。
如果更新 成功 ,当前线程就获得了锁。
如果更新 失败 JVM
会先检查锁对象的 Mark Word
是否指向当前线程的锁记录。
如果是则说明当前线程拥有锁对象的锁,可以直接进入同步块。
不是则说明有其他线程抢占了锁,如果存在多个线程同时竞争一把锁, 轻量锁就会膨胀为重量锁 。
解锁
轻量锁的解锁过程也是利用 CAS
来实现的,会尝试锁记录替换回锁对象的 Mark Word
。如果替换成功则说明整个同步操作完成,失败则说明有其他线程尝试获取锁,这时就会唤醒被挂起的线程(此时已经膨胀为 重量锁
)
轻量锁能提升性能的原因是:认为大多数锁在整个同步周期都不存在竞争,所以使用 CAS
比使用互斥开销更少。但如果锁竞争激烈,轻量锁就不但有互斥的开销,还有 CAS
的开销,甚至比重量锁更慢。
偏向锁
为了进一步的降低获取锁的代价, JDK1.6
之后还引入了偏向锁。
偏向锁的特征是:锁不存在多线程竞争,并且应由一个线程多次获得锁。
当线程访问同步块时,会使用 CAS
将线程 ID 更新到锁对象的 Mark Word
中,如果更新成功则获得偏向锁,并且之后每次进入这个对象锁相关的同步块时都不需要再次获取锁了。
释放锁
当有另外一个线程获取这个锁时,持有偏向锁的线程就会释放锁,释放时会等待全局安全点(这一时刻没有字节码运行),接着会暂停拥有偏向锁的线程,根据锁对象目前是否被锁来判定将对象头中的 Mark Word
设置为无锁或者是轻量锁状态。
偏向锁可以提高带有同步却没有竞争的程序性能,但如果程序中大多数锁都存在竞争时,那偏向锁就起不到太大作用。可以使用 -XX:-userBiasedLocking=false
来关闭偏向锁,并默认进入轻量锁。
其他优化
自旋锁
- 线程的阻塞和唤醒需要 CPU 从用户态转为核心态,频繁的阻塞和唤醒对 CPU 来说是一件负担很重的工作,势必会给系统的并发性能带来很大的压力。同 时我们发现在许多应用上面,对象锁的锁状态只会持续很短一段时间,为了这一段很短的时间频繁地阻塞和唤醒线程是非常不值得的。所以引入自旋锁。
何谓自旋锁?
- 所谓自旋锁,就是让该线程等待一段时间,不会被立即挂起,看持有锁的线程是否会很快释放锁。怎么等待呢?执行一段无意义的循环即可(自旋)。
- 自旋等待不能替代阻塞,先不说对处理器数量的要求,虽然它可以避免线程切换带来的开销,但是它占用了处理器的时间。如果持有锁的线程很快就释放了 锁,那么自旋的效率就非常好,反之,自旋的线程就会白白消耗掉处理的资源,它不会做任何有意义的工作,典型的占着茅坑不拉屎,这样反而会带来性能上的浪 费。所以说,自旋等待的时间(自旋的次数)必须要有一个限度,如果自旋超过了定义的时间仍然没有获取到锁,则应该被挂起。
- 自旋锁在 JDK 1.4.2 中引入,默认关闭,但是可以使用-XX:+UseSpinning 开开启,在 JDK1.6 中默认开启。同时自旋的默认次数为 10 次,可以通过参数-XX:PreBlockSpin 来调整;
- 如果通过参数-XX:preBlockSpin 来调整自旋锁的自旋次数,会带来诸多不便。假如我将参数调整为 10,但是系统很多线程都是等你刚刚 退出的时候就释放了锁(假如你多自旋一两次就可以获取锁),你是不是很尴尬。于是 JDK1.6 引入自适应的自旋锁,让虚拟机会变得越来越聪明。
适应性自旋(CAS)
- 在使用
CAS
时,如果操作失败,CAS
会自旋再次尝试。由于自旋是需要消耗CPU
资源的,所以如果长期自旋就白白浪费了CPU
。JDK1.6
加入了适应性自旋:如果某个锁自旋很少成功获得,那么下一次就会减少自旋。 - 所谓自适应就意味着自旋的次数不再是固定的,它是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定
- 线程如果自旋成功了,那么下次自旋的次数会更加多,因为虚拟机认为既然上次成功了,那么此次自旋也很有可能会再次成功,那么它就会允许自旋等待持 续的次数更多。反之,如果对于某个锁,很少有自旋能够成功的,那么在以后要或者这个锁的时候自旋的次数会减少甚至省略掉自旋过程,以免浪费处理器资源。
锁粗化
- 我们知道在使用同步锁的时候,需要让同步块的作用范围尽可能小—仅在共享数据的实际作用域中才进行同步,这样做的目的是为了使需要同步的操作数量尽可能缩小,如果存在锁竞争,那么等待锁的线程也能尽快拿到锁。
- 在大多数的情况下,上述观点是正确的,LZ 也一直坚持着这个观点。但是如果一系列的连续加锁解锁操作,可能会导致不必要的性能损耗,所以引入锁粗话的概念。
- 锁粗话概念比较好理解,就是将多个连续的加锁、解锁操作连接在一起,扩展成一个范围更大的锁。如:vector 每次 add 的时候都需要加锁操作, JVM 检测到对同一个对象(vector)连续加锁、解锁操作,会合并一个更大范围的加锁、解锁操作,即加锁解锁操作会移到 for 循环之外。
不同锁的比较
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论