- Introduction
- Chapter 1 Values, Types, and Operators
- Chapter 2 Program Structure
- Expressions and statements
- Variables
- Keywords and reserved words
- The environment
- Functions
- The console.log function
- Return values
- prompt and confirm
- Control flow
- Conditional execution
- while and do loops
- Indenting Code
- for loops
- Breaking Out of a Loop
- Updating variables succinctly
- Dispatching on a value with switch
- Capitalization
- Comments
- Summary
- Exercises
- Chapter 3 Functions
- Chapter 4 Data Structures: Objects and Arrays
- Chapter 5 Higher-Order Functions
- Chapter 6 The Secret Life of Objects
- Chapter 7 Project: Electronic Life
- Chapter 8 Bugs and Error Handling
- Chapter 9 Regular Expressions
- Creating a regular expression
- Testing for matches
- Matching a set of characters
- Repeating parts of a pattern
- Grouping subexpressions
- Matches and groups
- The date type
- Word and string boundaries
- Choice patterns
- The mechanics of matching
- Backtracking
- The replace method
- Greed
- Dynamically creating RegExp objects
- The search method
- The lastIndex property
- Parsing an INI file
- International characters
- Summary
- Exercises
- Chapter 10 Modules
- Chapter 11 Project: A Programming Language
- Chapter 12 JavaScript and the Browser
- Chapter 13 The Document Object Model
- Chapter 14 Handling Events
- Chapter 15 Project: A Platform Game
- Chapter 16 Drawing on Canvas
- Chapter 17 HTTP
- Chapter 18 Forms and Form Fields
- Chapter 19 Project: A Paint Program
- Chapter 20 Node.js
- Chapter 21 Project: Skill-Sharing Website
- Eloquent JavaScript
- Exercise Hints
- Program Structure
- Functions
- Data Structures: Objects and Arrays
- Higher-Order Functions
- The Secret Life of Objects
- Project: Electronic Life
- Bugs and Error Handling
- Regular Expressions
- Modules
- Project: A Programming Language
- The Document Object Model
- Handling Events
- Project: A Platform Game
- Drawing on Canvas
- HTTP
- Forms and Form Fields
- Project: A Paint Program
- Node.js
- Project: Skill-Sharing Website
Backtracking
The regular expression /\b([01]+b|\d+|[\da-f]+h)\b/
matches either a binary number followed by a b, a regular decimal number with no suffix character, or a hexadecimal number (that is, base 16, with the letters a to f standing for the digits 10 to 15) followed by an h. This is the corresponding diagram:
When matching this expression, it will often happen that the top (binary) branch is entered even though the input does not actually contain a binary number. When matching the string "103"
, for example, it becomes clear only at the 3 that we are in the wrong branch. The string does match the expression, just not the branch we are currently in.
So the matcher backtracks. When entering a branch, it remembers its current position (in this case, at the start of the string, just past the first boundary box in the diagram) so that it can go back and try another branch if the current one does not work out. For the string "103"
, after encountering the 3 character, it will start trying the branch for decimal numbers. This one matches, so a match is reported after all.
The matcher stops as soon as it finds a full match. This means that if multiple branches could potentially match a string, only the first one (ordered by where the branches appear in the regular expression) is used.
Backtracking also happens for repetition operators like + and *
. If you match /^.*x/
against "abcxe"
, the .*
part will first try to consume the whole string. The engine will then realize that it needs an x to match the pattern. Since there is no x past the end of the string, the star operator tries to match one character less. But the matcher doesn’t find an x after abcx
either, so it backtracks again, matching the star operator to just abc
. Now it finds an x where it needs it and reports a successful match from positions 0 to 4.
It is possible to write regular expressions that will do a lot of backtracking. This problem occurs when a pattern can match a piece of input in many different ways. For example, if we get confused while writing a binary-number regular expression, we might accidentally write something like /([01]+)+b/
.
If that tries to match some long series of zeros and ones with no trailing b character, the matcher will first go through the inner loop until it runs out of digits. Then it notices there is no b, so it backtracks one position, goes through the outer loop once, and gives up again, trying to backtrack out of the inner loop once more. It will continue to try every possible route through these two loops. This means the amount of work doubles with each additional character. For even just a few dozen characters, the resulting match will take practically forever.
This is a book about getting computers to do what you want them to do. Computers are about as common as screwdrivers today, but they contain a lot more hidden complexity and thus are harder to operate and understand. To many, they remain alien, slightly threatening things.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论