- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
Finding paraemeters for ODE models
This is a specialized application of curve_fit
, in which the curve to be fitted is defined implcitly by an ordinary differentail equation
\[\frac{dx}{dt} = -kx\]
and we want to use observed data to estiamte the parameters \(k\) and the initial value \(x_0\). Of course this can be explicitly solved but the same approach can be used to find multiple paraemters for \(n\)-dimensional systems of ODEs.
A more elaborate example for fitting a system of ODEs to model the zombie apocalypse
from scipy.integrate import odeint
def f(x, t, k): “”“Simple exponential decay.”“” return -k*x
def x(t, k, x0): “”” Solution to the ODE x’(t) = f(t,x,k) with initial condition x(0) = x0 “”” x = odeint(f, x0, t, args=(k,)) return x.ravel()
# True parameter values x0_ = 10 k_ = 0.1*np.pi # Some random data genererated from closed form soltuion plus Gaussian noise ts = np.sort(np.random.uniform(0, 10, 200)) xs = x0_*np.exp(-k_*ts) + np.random.normal(0,0.1,200) popt, cov = curve_fit(x, ts, xs) k_opt, x0_opt = popt print("k = %g" % k_opt) print("x0 = %g" % x0_opt)
k = 0.314062 x0 = 9.754
import matplotlib.pyplot as plt t = np.linspace(0, 10, 100) plt.plot(ts, xs, '.', t, x(t, k_opt, x0_opt), '-');
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论