返回介绍

solution / 1100-1199 / 1105.Filling Bookcase Shelves / README_EN

发布于 2024-06-17 01:03:23 字数 6744 浏览 0 评论 0 收藏 0

1105. Filling Bookcase Shelves

中文文档

Description

You are given an array books where books[i] = [thicknessi, heighti] indicates the thickness and height of the ith book. You are also given an integer shelfWidth.

We want to place these books in order onto bookcase shelves that have a total width shelfWidth.

We choose some of the books to place on this shelf such that the sum of their thickness is less than or equal to shelfWidth, then build another level of the shelf of the bookcase so that the total height of the bookcase has increased by the maximum height of the books we just put down. We repeat this process until there are no more books to place.

Note that at each step of the above process, the order of the books we place is the same order as the given sequence of books.

  • For example, if we have an ordered list of 5 books, we might place the first and second book onto the first shelf, the third book on the second shelf, and the fourth and fifth book on the last shelf.

Return _the minimum possible height that the total bookshelf can be after placing shelves in this manner_.

 

Example 1:

Input: books = [[1,1],[2,3],[2,3],[1,1],[1,1],[1,1],[1,2]], shelfWidth = 4
Output: 6
Explanation:
The sum of the heights of the 3 shelves is 1 + 3 + 2 = 6.
Notice that book number 2 does not have to be on the first shelf.

Example 2:

Input: books = [[1,3],[2,4],[3,2]], shelfWidth = 6
Output: 4

 

Constraints:

  • 1 <= books.length <= 1000
  • 1 <= thicknessi <= shelfWidth <= 1000
  • 1 <= heighti <= 1000

Solutions

Solution 1: Dynamic Programming

We define $f[i]$ as the minimum height for placing the first $i$ books, initially $f[0] = 0$, and the answer is $f[n]$.

Consider $f[i]$, the last book is $books[i - 1]$, its thickness is $w$, and its height is $h$.

  • If this book is placed on a new layer alone, then $f[i] = f[i - 1] + h$;
  • If this book can be placed on the same layer with the last few books in front, we enumerate the first book $books[j-1]$ on the same layer from back to front, where $j \in [1, i - 1]$, accumulate the thickness of the book to $w$, if $w > shelfWidth$, it means that $books[j-1]$ can no longer be placed on the same layer with $books[i-1]$, stop enumeration; otherwise, we update the maximum height $h = \max(h, books[j-1][1])$ of the current layer, then $f[i] = \min(f[i], f[j - 1] + h)$.

The final answer is $f[n]$.

The time complexity is $O(n^2)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $books$.

class Solution:
  def minHeightShelves(self, books: List[List[int]], shelfWidth: int) -> int:
    n = len(books)
    f = [0] * (n + 1)
    for i, (w, h) in enumerate(books, 1):
      f[i] = f[i - 1] + h
      for j in range(i - 1, 0, -1):
        w += books[j - 1][0]
        if w > shelfWidth:
          break
        h = max(h, books[j - 1][1])
        f[i] = min(f[i], f[j - 1] + h)
    return f[n]
class Solution {
  public int minHeightShelves(int[][] books, int shelfWidth) {
    int n = books.length;
    int[] f = new int[n + 1];
    for (int i = 1; i <= n; ++i) {
      int w = books[i - 1][0], h = books[i - 1][1];
      f[i] = f[i - 1] + h;
      for (int j = i - 1; j > 0; --j) {
        w += books[j - 1][0];
        if (w > shelfWidth) {
          break;
        }
        h = Math.max(h, books[j - 1][1]);
        f[i] = Math.min(f[i], f[j - 1] + h);
      }
    }
    return f[n];
  }
}
class Solution {
public:
  int minHeightShelves(vector<vector<int>>& books, int shelfWidth) {
    int n = books.size();
    int f[n + 1];
    f[0] = 0;
    for (int i = 1; i <= n; ++i) {
      int w = books[i - 1][0], h = books[i - 1][1];
      f[i] = f[i - 1] + h;
      for (int j = i - 1; j > 0; --j) {
        w += books[j - 1][0];
        if (w > shelfWidth) {
          break;
        }
        h = max(h, books[j - 1][1]);
        f[i] = min(f[i], f[j - 1] + h);
      }
    }
    return f[n];
  }
};
func minHeightShelves(books [][]int, shelfWidth int) int {
  n := len(books)
  f := make([]int, n+1)
  for i := 1; i <= n; i++ {
    w, h := books[i-1][0], books[i-1][1]
    f[i] = f[i-1] + h
    for j := i - 1; j > 0; j-- {
      w += books[j-1][0]
      if w > shelfWidth {
        break
      }
      h = max(h, books[j-1][1])
      f[i] = min(f[i], f[j-1]+h)
    }
  }
  return f[n]
}
function minHeightShelves(books: number[][], shelfWidth: number): number {
  const n = books.length;
  const f = new Array(n + 1).fill(0);
  for (let i = 1; i <= n; ++i) {
    let [w, h] = books[i - 1];
    f[i] = f[i - 1] + h;
    for (let j = i - 1; j > 0; --j) {
      w += books[j - 1][0];
      if (w > shelfWidth) {
        break;
      }
      h = Math.max(h, books[j - 1][1]);
      f[i] = Math.min(f[i], f[j - 1] + h);
    }
  }
  return f[n];
}
public class Solution {
  public int MinHeightShelves(int[][] books, int shelfWidth) {
    int n = books.Length;
    int[] f = new int[n + 1];
    for (int i = 1; i <= n; ++i) {
      int w = books[i - 1][0], h = books[i - 1][1];
      f[i] = f[i - 1] + h;
      for (int j = i - 1; j > 0; --j) {
        w += books[j - 1][0];
        if (w > shelfWidth) {
          break;
        }
        h = Math.Max(h, books[j - 1][1]);
        f[i] = Math.Min(f[i], f[j - 1] + h);
      }
    }
    return f[n];
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文