返回介绍

Zero Sum Subarray

发布于 2025-02-22 13:01:23 字数 6723 浏览 0 评论 0 收藏 0

Source

Given an integer array, find a subarray where the sum of numbers is zero.
Your code should return the index of the first number and the index of the last number.

Example
Given [-3, 1, 2, -3, 4], return [0, 2] or [1, 3].

Note
There is at least one subarray that it's sum equals to zero.

题解 1 - 两重 for 循环

题目中仅要求返回一个子串(连续) 中和为 0 的索引,而不必返回所有可能满足题意的解。最简单的想法是遍历所有子串,判断其和是否为 0,使用两重循环即可搞定,最坏情况下时间复杂度为 O(n2)O(n^2)O(n2), 这种方法显然是极其低效的,极有可能会出现 TLE . 下面就不浪费篇幅贴代码了。

题解 2 - 比较子串和( TLE )

两重 for 循环显然是我们不希望看到的解法,那么我们再来分析下题意,题目中的对象是分析子串和,那么我们先从常见的对数组求和出发,f(i)=∑0inums[i]f(i) = \sum _{0} ^{i} nums[i]f(i)=∑0inums[i] 表示从数组下标 0 开始至下标 i 的和。子串和为 0,也就意味着存在不同的 i1i_1i1 和 i2i_2i2 使得 f(i1)−f(i2)=0f(i_1) - f(i_2) = 0f(i1)−f(i2)=0, 等价于 f(i1)=f(i2)f(i_1) = f(i_2)f(i1)=f(i2). 思路很快就明晰了,使用一 vector 保存数组中从 0 开始到索引 i 的和,在将值 push 进 vector 之前先检查 vector 中是否已经存在,若存在则将相应索引加入最终结果并返回。

C++

class Solution {
public:
  /**
   * @param nums: A list of integers
   * @return: A list of integers includes the index of the first number
   *      and the index of the last number
   */
  vector<int> subarraySum(vector<int> nums){
    vector<int> result;

    int curr_sum = 0;
    vector<int> sum_i;
    for (int i = 0; i != nums.size(); ++i) {
      curr_sum += nums[i];

      if (0 == curr_sum) {
        result.push_back(0);
        result.push_back(i);
        return result;
      }

      vector<int>::iterator iter = find(sum_i.begin(), sum_i.end(), curr_sum);
      if (iter != sum_i.end()) {
        result.push_back(iter - sum_i.begin() + 1);
        result.push_back(i);
        return result;
      }

      sum_i.push_back(curr_sum);
    }

    return result;
  }
};

源码分析

使用 curr_sum 保存到索引 i 处的累加和, sum_i 保存不同索引处的和。执行 sum_i.push_back 之前先检查 curr_sum 是否为 0,再检查 curr_sum 是否已经存在于 sum_i 中。是不是觉得这种方法会比题解 1 好?错!时间复杂度是一样一样的!根本原因在于 find 操作的时间复杂度为线性。与这种方法类似的有哈希表实现,哈希表的查找在理想情况下可认为是 O(1)O(1)O(1).

复杂度分析

最坏情况下 O(n2)O(n^2)O(n2), 实测和题解 1 中的方法运行时间几乎一致。

题解 3 - 哈希表

终于到了祭出万能方法时候了,题解 2 可以认为是哈希表的雏形,而哈希表利用空间换时间的思路争取到了宝贵的时间资源 :)

C++

class Solution {
public:
  /**
   * @param nums: A list of integers
   * @return: A list of integers includes the index of the first number
   *      and the index of the last number
   */
  vector<int> subarraySum(vector<int> nums){
    vector<int> result;
    // curr_sum for the first item, index for the second item
    map<int, int> hash;
    hash[0] = 0;

    int curr_sum = 0;
    for (int i = 0; i != nums.size(); ++i) {
      curr_sum += nums[i];
      if (hash.find(curr_sum) != hash.end()) {
        result.push_back(hash[curr_sum]);
        result.push_back(i);
        return result;
      } else {
        hash[curr_sum] = i + 1;
      }
    }

    return result;
  }
};

源码分析

为了将 curr_sum == 0 的情况也考虑在内,初始化哈希表后即赋予 <0, 0> . 给 hash 赋值时使用 i + 1 , push_back 时则不必再加 1.

由于 C++ 中的 map 采用红黑树实现,故其并非真正的「哈希表」,C++ 11 中引入的 unordered_map 用作哈希表效率更高,实测可由 1300ms 降至 1000ms.

复杂度分析

遍历求和时间复杂度为 O(n)O(n)O(n), 哈希表检查键值时间复杂度为 O(logL)O(\log L)O(logL), 其中 LLL 为哈希表长度。如果采用 unordered_map 实现,最坏情况下查找的时间复杂度为线性,最好为常数级别。

题解 4 - 排序

除了使用哈希表,我们还可使用排序的方法找到两个子串和相等的情况。这种方法的时间复杂度主要集中在排序方法的实现。由于除了记录子串和之外还需记录索引,故引入 pair 记录索引,最后排序时先按照 sum 值来排序,然后再按照索引值排序。如果需要自定义排序规则可参考sort_pair_second .

C++

class Solution {
public:
  /**
   * @param nums: A list of integers
   * @return: A list of integers includes the index of the first number
   *      and the index of the last number
   */
  vector<int> subarraySum(vector<int> nums){
    vector<int> result;
    if (nums.empty()) {
      return result;
    }

    const int num_size = nums.size();
    vector<pair<int, int> > sum_index(num_size + 1);
    for (int i = 0; i != num_size; ++i) {
      sum_index[i + 1].first = sum_index[i].first + nums[i];
      sum_index[i + 1].second = i + 1;
    }

    sort(sum_index.begin(), sum_index.end());
    for (int i = 1; i < num_size + 1; ++i) {
      if (sum_index[i].first == sum_index[i - 1].first) {
        result.push_back(sum_index[i - 1].second);
        result.push_back(sum_index[i].second - 1);
        return result;
      }
    }

    return result;
  }
};

源码分析

没啥好分析的,注意好边界条件即可。这里采用了链表中常用的「dummy」节点方法, pair 排序后即为我们需要的排序结果。这种排序的方法需要先求得所有子串和然后再排序,最后还需要遍历排序后的数组,效率自然是比不上哈希表。但是在某些情况下这种方法有一定优势。

复杂度分析

遍历求子串和,时间复杂度为 O(n)O(n)O(n), 空间复杂度 O(n)O(n)O(n). 排序时间复杂度近似 O(nlogn)O(n \log n)O(nlogn), 遍历一次最坏情况下时间复杂度为 O(n)O(n)O(n). 总的时间复杂度可近似为 O(nlogn)O(n \log n)O(nlogn). 空间复杂度 O(n)O(n)O(n).

扩展

这道题的要求是找到一个即可,但是要找出所有满足要求的解呢?Stackoverflow 上有这道延伸题的讨论stackoverflow .

另一道扩展题来自 Google 的面试题 - Find subarray with given sum - GeeksforGeeks .

Reference

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文