- 本书所获赞誉
- 序言
- 关于判断与决策的有趣研究
- 快思考,慢思考
- 主要内容
- 第一部分 系统 1,系统 2
- 第 1 章 一张愤怒的脸和一道乘法题
- 第 2 章 电影的主角与配角
- 第 3 章 惰性思维与延迟满足的矛盾
- 第 4 章 联想的神奇力量
- 第 5 章 你的直觉有可能只是错觉
- 第 6 章 意料之外与情理之中
- 第 7 章 字母 B 与数字 13
- 第 8 章 我们究竟是如何作出判断的?
- 第 9 章 目标问题与启发性问题形影不离
- 第二部分 启发法与偏见
- 第 10 章 大数法则与小数定律
- 第 11 章 锚定效应在生活中随处可见
- 第 12 章 科学地利用可得性启发法
- 第 13 章 焦虑情绪与风险政策的设计
- 第 14 章 猜一下,汤姆的专业是什么?
- 第 15 章 琳达问题的社会效应
- 第 16 章 因果关系比统计学信息更具说服力
- 第 17 章 所有表现都会回归平均值
- 第 18 章 如何让直觉性预测更恰当有效?
- 第三部分 过度自信与决策失误
- 第 19 章 知道 的错觉
- 第 20 章 未来是不可预测的
- 第 21 章 直觉判断与公式运算,孰优孰劣?
- 第 22 章 什么时候可以相信专家的直觉?
- 第 23 章 努力养成采纳外部意见的决策习惯
- 第 24 章 乐观主义是一柄双刃剑
- 第四部分 选择与风险
- 第 25 章 事关风险与财富的抉择
- 第 26 章 更人性化的前景理论
- 第 27 章 禀赋效应与市场交易
- 第 28 章 公平性 - 经济交易的参照点
- 第 29 章 对结果可能性的权衡
- 第 30 章 被过分关注的罕见事件
- 第 31 章 能带来长远收益的风险政策
- 第 32 章 心理账户是如何影响我们的选择的?
- 第 33 章 评估结果的逆转
- 第 34 章 善用框架效应,让生活更美好
- 第五部分 两个自我
- 第 35 章 体验效用与决策效用的不一致
- 第 36 章 人生如戏
- 第 37 章 你有多幸福?
- 第 38 章 思考生活
- 附录 A 不确定性下的判断:启发法和偏见
- 附录 B 选择、价值以及框架
- 致谢
典型性启发的两宗罪
用典型性来判断概率有一些重要的优点,它所带来的初始印象通常比乱猜一气更为精确。
·在大多数情况下,表现得很友好的人实际上也很友好。
·又高又瘦的职业运动员很有可能是打篮球的而不是踢足球的。
·获得哲学博士学位的人比只读完高中的人更有可能订阅《纽约时报》。
·年轻的男性会比年老的女性更不要命地踩油门。
在这些例子及其他更多例子中,典型的形象特征左右着我们对典型性的判断,受这种典型性启发得到的预测有可能是对的,这样的说法在某种程度上就是事实。然而在其他情况下这种典型形象却是错误的,因而典型性的启发也会造成误导,尤其会使人们忽略基础比率信息、找错预测方向。即使启发性具有一定的真实性,但绝对依赖启发效应就是违背统计学逻辑,是有严重“罪过”的。
典型性的第一宗罪就是,它过于喜爱预测不可能发生的(低基础比率的)事件。
下面就是一个例子:如果你看见一个人在纽约地铁里阅读《纽约时报》,下面哪种情况与读报者更吻合?
她有博士学位。
她没有大学文凭。
典型性会告诉你应该选有博士学位那位,但这样做并不一定是明智的。你应该充分考虑第二个选项,因为纽约地铁里更多的是没有大学文凭的人,而不是有博士学位的人。如果猜测一个被描述为“羞涩的诗歌爱好者”的女士学的是中国文学还是工商管理,你也应该选择第二个答案。因为虽然学习中国文学的女学生都害羞且爱好诗歌,但几乎可以肯定的是有更多工商管理专业的学生同样也是害羞的诗歌爱好者。
在某些情况下,没有受过统计学训练的人也会使用基础比率来进行预测。在本章开头关于汤姆的第一个问题中,我们没有提供关于他的细节,对于每一个人来说,汤姆读某个专业的概率就是那个专业招生规模的基础比率。然而,得知汤姆的个性特征后,人们再也不会将基础比率纳入考虑范围了。
在前期证据的基础上,我和阿莫斯原本以为在了解了具体信息后,基础比率的信息“总会”被忽略,但是这样的结论太过绝对了。心理学家做过许多实验,在这些实验中,所给问题都明确地提供了基础比率信息,尽管关于个人特征的信息比单纯的数据分量更重,许多受试者还是受到了这些特征信息的影响。诺伯特。施瓦茨和他的同事表示,引导人们“像统计学家那样思考”就能够促使他们使用基础比率信息,引导人们“像临床医生”那样思考则会起到相反的效果。
几年前,我和哈佛大学的学生做了一项实验,让我有了一个令我十分惊讶的发现:增强系统 2 的激活状态能有效提高回答汤姆问题的准确率。这项实验将旧问题与认知顺畅性的现有形式结合了起来。在实验过程中,我们要求一半学生鼓腮帮,另一半学生皱眉头。前文中已经提过,皱眉通常可以增强系统 2 的警觉性,降低对直觉的过分相信和依赖。鼓起腮帮(与感情无关的表情)的学生的预测结果与原实验结果一样:他们只依赖于典型性,而忽略了基础比率。然而不出作者所料,那些皱眉头的同学的确对基础比率表现得很敏感。这是一个具有启发性的发现。
一旦人们作出一个错误的直觉判断,系统 1 和系统 2 都脱不了干系。系统 1 引起了错误的直觉,系统 2 采纳了这个直觉,并将其运用在判断当中。然而,造成系统 2 犯下此类错误的原因有两个—忽视与懒惰。许多人忽视了基础比率,因为在有个人信息的情况下他们认为基础比率与问题并无关联。另一些人犯下同样的错误则是因为他们没有将注意力集中在任务上。如果皱眉能带来不同结果的话,这说明懒惰也许是人们忽视基础比率的合理解释,至少对于哈佛大学的学生来说是这样。当具体信息缺失时,他们的系统 2“知道”基础比率与问题相关,但是只有在任务中付出特别努力时,才能将基础比率的知识应用于其中。
典型性的第二宗罪是它对证据质量不够敏感。请回想系统 1 的眼见即为事实的原则。在汤姆的问题中,激活你联想机制的是对汤姆的描述,且这个描述不一定是真实的。对汤姆“对人冷淡,缺乏同情心”的表述也许能让你(以及许多其他读者)相信他不太可能是社会科学与社会工作专业的学生。然而,彼时你已经清楚地知道这样的描述是不可信的。
原则上讲,你当然知道不值得信任的信息就相当于没有信息,但是眼见即为事实使你难以遵循那条原则。除非你决定立刻否定证据(例如,你坚信的信息是从一个骗子口中得来的),否则你的系统 1 会自动将这一信息视为真实的。当你怀疑信息的可靠性时,可以做一件事:作概率判断时,往基础比率那方面想。别期望遵循这条原则会很容易—它需要在付出很多努力的情况下,才能实现自我监督和自我控制。
想要得出汤姆问题的正确答案,你应该遵从最先出现在自己脑海中的想法,若认为某招生人数多的专业(人文与教育、社会科学与社会工作)被选中的概率高,则稍微降低其概率;若认为某招生人数少的专业(图书馆学、计算机科学)被选中的概率低,则稍微提高其概率。如果你对汤姆一无所知,你作出的抉择就不是你的初衷了,你手头上的那点信息也不能相信了。所以,你应该让基础比率在预测时起主导作用。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论