- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Series
Series is a 1D array with axis labels.
# Creating a series and extracting elements. xs = Series(np.arange(10), index=tuple(letters[:10])) print xs[:3],'\n' print xs[7:], '\n' print xs[::3], '\n' print xs[['d', 'f', 'h']], '\n' print xs.d, xs.f, xs.h
a 0 b 1 c 2 dtype: int64 h 7 i 8 j 9 dtype: int64 a 0 d 3 g 6 j 9 dtype: int64 d 3 f 5 h 7 dtype: int64 3 5 7
# All the numpy functions wiill work with Series objects, and return another Series y1, y2 = np.mean(xs), np.var(xs) y1, y2
(4.5, 8.25)
# Matplotlib will work on Series objects too plt.plot(xs, np.sin(xs), 'r-o', xs, np.cos(xs), 'b-x');
# Convert to numpy arrays with values print xs.values
[0 1 2 3 4 5 6 7 8 9]
# The Series datatype can also be used to represent time series import datetime as dt from pandas import date_range # today = dt.date.today() today = dt.datetime.strptime('Jan 21 2015', '%b %d %Y') print today, '\n' days = date_range(today, periods=35, freq='D') ts = Series(np.random.normal(10, 1, len(days)), index=days) # Extracting elements print ts[0:4], '\n' print ts['2015-01-21':'2015-01-28'], '\n' # Note - includes end time
2015-01-21 00:00:00 2015-01-21 9.719261 2015-01-22 8.894461 2015-01-23 10.074521 2015-01-24 10.769334 Freq: D, dtype: float64 2015-01-21 9.719261 2015-01-22 8.894461 2015-01-23 10.074521 2015-01-24 10.769334 2015-01-25 10.159401 2015-01-26 8.992754 2015-01-27 9.681121 2015-01-28 9.908445 Freq: D, dtype: float64
# We can geenerate statistics for time ranges with the resample method # For example, suppose we are interested in weekly means, standard deviations and sum-of-squares df = ts.resample(rule='W', how=('mean', 'std', lambda x: sum(x*x))) df
mean | std | <lambda> | |
---|---|---|---|
2015-01-25 | 9.923396 | 0.688209 | 494.263430 |
2015-02-01 | 10.357088 | 0.848930 | 755.208973 |
2015-02-08 | 10.224806 | 0.869441 | 736.362134 |
2015-02-15 | 10.672230 | 0.942680 | 802.607338 |
2015-02-22 | 9.785174 | 1.012906 | 676.403270 |
2015-03-01 | 9.495084 | 1.472653 | 182.481942 |
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论