返回介绍

内存使用

发布于 2025-01-01 12:38:38 字数 729 浏览 0 评论 0 收藏 0

稀疏 VS 密集

上面我们介绍了如何存储数字,现在让我们来谈谈如何存储矩阵。 节省内存(和计算)的关键方法不是存储所有矩阵。 相反,只需存储非零元素。 这称为稀疏存储,它非常适合稀疏矩阵,即大多数元素为零的矩阵。

以下是有限元问题的矩阵示例,该问题出现在工程中(例如,在对平面周围的气流进行建模时)。 在此示例中,非零元素为黑色,零元素为白色:

来源

还有特殊类型的结构化矩阵,例如对角线,三对角线,hessenberg 和三角,它们都表现稀疏性的特定模式,可以利用它们来减少内存和计算。

与稀疏矩阵相反的是密集矩阵,以及密集存储,其仅仅指代主要包含非零的矩阵,其中每个元素被显式存储。 由于稀疏矩阵是有用且常见的,因此数值线性代数侧重于通过尽可能多的操作来保持稀疏性。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文