- 序
- 译后感
- 原作者前言
- *args 和 **kwargs
- *args 的用法
- **kwargs 的用法
- 使用 *args 和 **kwargs 来调用函数
- 啥时候使用它们
- 调试 Debugging
- 生成器 Generators
- 可迭代对象(Iterable)
- 迭代器(Iterator)
- 迭代(Iteration)
- 生成器(Generators)
- Map,Filter 和 Reduce
- Map
- Filter
- Reduce
- set 数据结构
- 三元运算符
- 装饰器
- 一切皆对象
- 在函数中定义函数
- 从函数中返回函数
- 将函数作为参数传给另一个函数
- 你的第一个装饰器
- 使用场景
- 授权
- 日志
- 带参数的装饰器
- 在函数中嵌入装饰器
- 装饰器类
- Global和Return
- 多个return值
- 对象变动 Mutation
- __slots__魔法
- 虚拟环境 Virtualenv
- 容器 Collections
- 枚举 Enumerate
- 对象自省
- dir
- type和id
- inspect模块
- 推导式 Comprehension
- 列表推导式
- 字典推导式
- 集合推导式
- 异常
- 处理多个异常
- finally从句
- try/else从句
- lambda表达式
- 一行式
- For - Else
- else语句
- 使用C扩展
- CTypes
- SWIG
- Python/C API
- open函数
- 协程
- 函数缓存
- Python 3.2+
- Python 2+
- 上下文管理器
- 基于类的实现
- 处理异常
- 基于生成器的实现
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
函数缓存
函数缓存允许我们将一个函数对于给定参数的返回值缓存起来。
当一个I/O密集的函数被频繁使用相同的参数调用的时候,函数缓存可以节约时间。
在Python 3.2版本以前我们只有写一个自定义的实现。在Python 3.2以后版本,有个lru_cache
的装饰器,允许我们将一个函数的返回值快速地缓存或取消缓存。
我们来看看,Python 3.2前后的版本分别如何使用它。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论