返回介绍

solution / 1100-1199 / 1155.Number of Dice Rolls With Target Sum / README_EN

发布于 2024-06-17 01:03:22 字数 8319 浏览 0 评论 0 收藏 0

1155. Number of Dice Rolls With Target Sum

中文文档

Description

You have n dice, and each dice has k faces numbered from 1 to k.

Given three integers n, k, and target, return _the number of possible ways (out of the _kn_ total ways) __to roll the dice, so the sum of the face-up numbers equals _target. Since the answer may be too large, return it modulo 109 + 7.

 

Example 1:

Input: n = 1, k = 6, target = 3
Output: 1
Explanation: You throw one die with 6 faces.
There is only one way to get a sum of 3.

Example 2:

Input: n = 2, k = 6, target = 7
Output: 6
Explanation: You throw two dice, each with 6 faces.
There are 6 ways to get a sum of 7: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1.

Example 3:

Input: n = 30, k = 30, target = 500
Output: 222616187
Explanation: The answer must be returned modulo 109 + 7.

 

Constraints:

  • 1 <= n, k <= 30
  • 1 <= target <= 1000

Solutions

Solution 1: Dynamic Programming

We define $f[i][j]$ as the number of ways to get a sum of $j$ using $i$ dice. Then, we can obtain the following state transition equation:

$$ f[i][j] = \sum_{h=1}^{\min(j, k)} f[i-1][j-h] $$

where $h$ represents the number of points on the $i$-th die.

Initially, we have $f[0][0] = 1$, and the final answer is $f[n][target]$.

The time complexity is $O(n \times k \times target)$, and the space complexity is $O(n \times target)$.

We notice that the state $f[i][j]$ only depends on $f[i-1][]$, so we can use a rolling array to optimize the space complexity to $O(target)$.

class Solution:
  def numRollsToTarget(self, n: int, k: int, target: int) -> int:
    f = [[0] * (target + 1) for _ in range(n + 1)]
    f[0][0] = 1
    mod = 10**9 + 7
    for i in range(1, n + 1):
      for j in range(1, min(i * k, target) + 1):
        for h in range(1, min(j, k) + 1):
          f[i][j] = (f[i][j] + f[i - 1][j - h]) % mod
    return f[n][target]
class Solution {
  public int numRollsToTarget(int n, int k, int target) {
    final int mod = (int) 1e9 + 7;
    int[][] f = new int[n + 1][target + 1];
    f[0][0] = 1;
    for (int i = 1; i <= n; ++i) {
      for (int j = 1; j <= Math.min(target, i * k); ++j) {
        for (int h = 1; h <= Math.min(j, k); ++h) {
          f[i][j] = (f[i][j] + f[i - 1][j - h]) % mod;
        }
      }
    }
    return f[n][target];
  }
}
class Solution {
public:
  int numRollsToTarget(int n, int k, int target) {
    const int mod = 1e9 + 7;
    int f[n + 1][target + 1];
    memset(f, 0, sizeof f);
    f[0][0] = 1;
    for (int i = 1; i <= n; ++i) {
      for (int j = 1; j <= min(target, i * k); ++j) {
        for (int h = 1; h <= min(j, k); ++h) {
          f[i][j] = (f[i][j] + f[i - 1][j - h]) % mod;
        }
      }
    }
    return f[n][target];
  }
};
func numRollsToTarget(n int, k int, target int) int {
  const mod int = 1e9 + 7
  f := make([][]int, n+1)
  for i := range f {
    f[i] = make([]int, target+1)
  }
  f[0][0] = 1
  for i := 1; i <= n; i++ {
    for j := 1; j <= min(target, i*k); j++ {
      for h := 1; h <= min(j, k); h++ {
        f[i][j] = (f[i][j] + f[i-1][j-h]) % mod
      }
    }
  }
  return f[n][target]
}
function numRollsToTarget(n: number, k: number, target: number): number {
  const f = Array.from({ length: n + 1 }, () => Array(target + 1).fill(0));
  f[0][0] = 1;
  const mod = 1e9 + 7;
  for (let i = 1; i <= n; ++i) {
    for (let j = 1; j <= Math.min(i * k, target); ++j) {
      for (let h = 1; h <= Math.min(j, k); ++h) {
        f[i][j] = (f[i][j] + f[i - 1][j - h]) % mod;
      }
    }
  }
  return f[n][target];
}
impl Solution {
  pub fn num_rolls_to_target(n: i32, k: i32, target: i32) -> i32 {
    let _mod = 1_000_000_007;
    let n = n as usize;
    let k = k as usize;
    let target = target as usize;
    let mut f = vec![vec![0; target + 1]; n + 1];
    f[0][0] = 1;

    for i in 1..=n {
      for j in 1..=target.min(i * k) {
        for h in 1..=j.min(k) {
          f[i][j] = (f[i][j] + f[i - 1][j - h]) % _mod;
        }
      }
    }

    f[n][target]
  }
}

Solution 2

class Solution:
  def numRollsToTarget(self, n: int, k: int, target: int) -> int:
    f = [1] + [0] * target
    mod = 10**9 + 7
    for i in range(1, n + 1):
      g = [0] * (target + 1)
      for j in range(1, min(i * k, target) + 1):
        for h in range(1, min(j, k) + 1):
          g[j] = (g[j] + f[j - h]) % mod
      f = g
    return f[target]
class Solution {
  public int numRollsToTarget(int n, int k, int target) {
    final int mod = (int) 1e9 + 7;
    int[] f = new int[target + 1];
    f[0] = 1;
    for (int i = 1; i <= n; ++i) {
      int[] g = new int[target + 1];
      for (int j = 1; j <= Math.min(target, i * k); ++j) {
        for (int h = 1; h <= Math.min(j, k); ++h) {
          g[j] = (g[j] + f[j - h]) % mod;
        }
      }
      f = g;
    }
    return f[target];
  }
}
class Solution {
public:
  int numRollsToTarget(int n, int k, int target) {
    const int mod = 1e9 + 7;
    vector<int> f(target + 1);
    f[0] = 1;
    for (int i = 1; i <= n; ++i) {
      vector<int> g(target + 1);
      for (int j = 1; j <= min(target, i * k); ++j) {
        for (int h = 1; h <= min(j, k); ++h) {
          g[j] = (g[j] + f[j - h]) % mod;
        }
      }
      f = move(g);
    }
    return f[target];
  }
};
func numRollsToTarget(n int, k int, target int) int {
  const mod int = 1e9 + 7
  f := make([]int, target+1)
  f[0] = 1
  for i := 1; i <= n; i++ {
    g := make([]int, target+1)
    for j := 1; j <= min(target, i*k); j++ {
      for h := 1; h <= min(j, k); h++ {
        g[j] = (g[j] + f[j-h]) % mod
      }
    }
    f = g
  }
  return f[target]
}
function numRollsToTarget(n: number, k: number, target: number): number {
  const f = Array(target + 1).fill(0);
  f[0] = 1;
  const mod = 1e9 + 7;
  for (let i = 1; i <= n; ++i) {
    const g = Array(target + 1).fill(0);
    for (let j = 1; j <= Math.min(i * k, target); ++j) {
      for (let h = 1; h <= Math.min(j, k); ++h) {
        g[j] = (g[j] + f[j - h]) % mod;
      }
    }
    f.splice(0, target + 1, ...g);
  }
  return f[target];
}
impl Solution {
  pub fn num_rolls_to_target(n: i32, k: i32, target: i32) -> i32 {
    let _mod = 1_000_000_007;
    let n = n as usize;
    let k = k as usize;
    let target = target as usize;
    let mut f = vec![0; target + 1];
    f[0] = 1;

    for i in 1..=n {
      let mut g = vec![0; target + 1];
      for j in 1..=target {
        for h in 1..=j.min(k) {
          g[j] = (g[j] + f[j - h]) % _mod;
        }
      }
      f = g;
    }

    f[target]
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文