返回介绍

solution / 1700-1799 / 1770.Maximum Score from Performing Multiplication Operations / README

发布于 2024-06-17 01:03:14 字数 9842 浏览 0 评论 0 收藏 0

1770. 执行乘法运算的最大分数

English Version

题目描述

给你两个长度分别 nm 的整数数组 numsmultipliers ,其中 n >= m ,数组下标 从 1 开始 计数。

初始时,你的分数为 0 。你需要执行恰好 m 步操作。在第 i 步操作(从 1 开始 计数)中,需要:

  • 选择数组 nums 开头处或者末尾处 的整数 x
  • 你获得 multipliers[i] * x 分,并累加到你的分数中。
  • x 从数组 nums 中移除。

在执行_ _m 步操作后,返回 最大 分数_。_

 

示例 1:

输入:nums = [1,2,3], multipliers = [3,2,1]
输出:14
解释:一种最优解决方案如下:
- 选择末尾处的整数 3 ,[1,2,3] ,得 3 * 3 = 9 分,累加到分数中。
- 选择末尾处的整数 2 ,[1,2] ,得 2 * 2 = 4 分,累加到分数中。
- 选择末尾处的整数 1 ,[1] ,得 1 * 1 = 1 分,累加到分数中。
总分数为 9 + 4 + 1 = 14 。

示例 2:

输入:nums = [-5,-3,-3,-2,7,1], multipliers = [-10,-5,3,4,6]
输出:102
解释:一种最优解决方案如下:
- 选择开头处的整数 -5 ,[-5,-3,-3,-2,7,1] ,得 -5 * -10 = 50 分,累加到分数中。
- 选择开头处的整数 -3 ,[-3,-3,-2,7,1] ,得 -3 * -5 = 15 分,累加到分数中。
- 选择开头处的整数 -3 ,[-3,-2,7,1] ,得 -3 * 3 = -9 分,累加到分数中。
- 选择末尾处的整数 1 ,[-2,7,1] ,得 1 * 4 = 4 分,累加到分数中。
- 选择末尾处的整数 7 ,[-2,7] ,得 7 * 6 = 42 分,累加到分数中。
总分数为 50 + 15 - 9 + 4 + 42 = 102 。

 

提示:

  • n == nums.length
  • m == multipliers.length
  • 1 <= m <= 103
  • m <= n <= 105
  • -1000 <= nums[i], multipliers[i] <= 1000

解法

方法一:记忆化搜索

我们设计一个函数 $dfs(i, j)$,表示从 nums 数组头部第 $i$ 个元素开始,从 nums 数组尾部第 $j$ 个元素开始,能够获得的最大分数。那么答案就是 $dfs(0, 0)$。

函数 $dfs(i, j)$ 的计算过程如下:

  • 如果 $i \geq m$ 或者 $j \geq m$,或者 $i + j \geq m$,说明已经没有元素可以选择了,返回 $0$。
  • 否则,我们可以选择 nums 数组头部第 $i$ 个元素,那么能够获取的最大分数为 $nums[i] \times multipliers[i + j] + dfs(i + 1, j)$;或者我们可以选择 nums 数组尾部第 $j$ 个元素,那么能够获取的最大分数为 $nums[n - j - 1] \times multipliers[i + j] + dfs(i, j + 1)$。我们取两者的最大值作为 $dfs(i, j)$ 的返回值。

我们可以使用记忆化搜索来实现上述递归过程,其中 f 数组用于存储函数 $dfs(i, j)$ 的返回值,防止重复计算。

时间复杂度 $O(m^2)$,空间复杂度 $O(m^2)$。其中 $m$ 为 multipliers 数组的长度。

class Solution:
  def maximumScore(self, nums: List[int], multipliers: List[int]) -> int:
    @cache
    def f(i, j, k):
      if k >= m or i >= n or j < 0:
        return 0
      a = f(i + 1, j, k + 1) + nums[i] * multipliers[k]
      b = f(i, j - 1, k + 1) + nums[j] * multipliers[k]
      return max(a, b)

    n = len(nums)
    m = len(multipliers)
    return f(0, n - 1, 0)
class Solution {
  private Integer[][] f;
  private int[] multipliers;
  private int[] nums;
  private int n;
  private int m;

  public int maximumScore(int[] nums, int[] multipliers) {
    n = nums.length;
    m = multipliers.length;
    f = new Integer[m][m];
    this.nums = nums;
    this.multipliers = multipliers;
    return dfs(0, 0);
  }

  private int dfs(int i, int j) {
    if (i >= m || j >= m || (i + j) >= m) {
      return 0;
    }
    if (f[i][j] != null) {
      return f[i][j];
    }
    int k = i + j;
    int a = dfs(i + 1, j) + nums[i] * multipliers[k];
    int b = dfs(i, j + 1) + nums[n - 1 - j] * multipliers[k];
    f[i][j] = Math.max(a, b);
    return f[i][j];
  }
}
class Solution {
public:
  int maximumScore(vector<int>& nums, vector<int>& multipliers) {
    int n = nums.size(), m = multipliers.size();
    int f[m][m];
    memset(f, 0x3f, sizeof f);
    function<int(int, int)> dfs = [&](int i, int j) -> int {
      if (i >= m || j >= m || (i + j) >= m) return 0;
      if (f[i][j] != 0x3f3f3f3f) return f[i][j];
      int k = i + j;
      int a = dfs(i + 1, j) + nums[i] * multipliers[k];
      int b = dfs(i, j + 1) + nums[n - j - 1] * multipliers[k];
      return f[i][j] = max(a, b);
    };
    return dfs(0, 0);
  }
};
func maximumScore(nums []int, multipliers []int) int {
  n, m := len(nums), len(multipliers)
  f := make([][]int, m)
  for i := range f {
    f[i] = make([]int, m)
    for j := range f[i] {
      f[i][j] = 1 << 30
    }
  }
  var dfs func(i, j int) int
  dfs = func(i, j int) int {
    if i >= m || j >= m || i+j >= m {
      return 0
    }
    if f[i][j] != 1<<30 {
      return f[i][j]
    }
    k := i + j
    a := dfs(i+1, j) + nums[i]*multipliers[k]
    b := dfs(i, j+1) + nums[n-j-1]*multipliers[k]
    f[i][j] = max(a, b)
    return f[i][j]
  }
  return dfs(0, 0)
}
function maximumScore(nums: number[], multipliers: number[]): number {
  const inf = 1 << 30;
  const n = nums.length;
  const m = multipliers.length;
  const f = new Array(m + 1).fill(0).map(() => new Array(m + 1).fill(-inf));
  f[0][0] = 0;
  let ans = -inf;
  for (let i = 0; i <= m; ++i) {
    for (let j = 0; j <= m - i; ++j) {
      const k = i + j - 1;
      if (i > 0) {
        f[i][j] = Math.max(f[i][j], f[i - 1][j] + nums[i - 1] * multipliers[k]);
      }
      if (j > 0) {
        f[i][j] = Math.max(f[i][j], f[i][j - 1] + nums[n - j] * multipliers[k]);
      }
      if (i + j === m) {
        ans = Math.max(ans, f[i][j]);
      }
    }
  }
  return ans;
}

方法二:动态规划

我们可以将方法一中的记忆化搜索改写为动态规划的形式。

我们用 $f[i][j]$ 表示取数组 $nums$ 的前 $i$ 个元素,以及取数组 $nums$ 的后 $j$ 个元素,能够获得的最大分数。初始时 $f[0][0] = 0$,其余元素均为 $-\infty$。答案为 $\max_{0 \leq i \leq m} f[i][m-i]$。

考虑 $f[i][j]$,那么当前我们可以选择 nums 数组头部的第 $i$ 个元素,或者选择 nums 数组尾部的第 $j$ 个元素。如果选择了 nums 数组头部的第 $i$ 个元素,那么能够获得的最大分数为 $f[i-1][j] + nums[i-1] \times multipliers[i+j-1]$;如果选择了 nums 数组尾部的第 $j$ 个元素,那么能够获得的最大分数为 $f[i][j-1] + nums[n-j] \times multipliers[i+j-1]$。我们取两者的最大值作为 $f[i][j]$ 的值。如果 $i + j = m$,我们我们更新答案 $ans = \max(ans, f[i][j])$。

最后返回答案 $ans$ 即可。

时间复杂度 $O(m^2)$,空间复杂度 $O(m^2)$。其中 $m$ 为 multipliers 数组的长度。

class Solution:
  def maximumScore(self, nums: List[int], multipliers: List[int]) -> int:
    n, m = len(nums), len(multipliers)
    f = [[-inf] * (m + 1) for _ in range(m + 1)]
    f[0][0] = 0
    ans = -inf
    for i in range(m + 1):
      for j in range(m - i + 1):
        k = i + j - 1
        if i > 0:
          f[i][j] = max(f[i][j], f[i - 1][j] + multipliers[k] * nums[i - 1])
        if j > 0:
          f[i][j] = max(f[i][j], f[i][j - 1] + multipliers[k] * nums[n - j])
        if i + j == m:
          ans = max(ans, f[i][j])
    return ans
class Solution {
  public int maximumScore(int[] nums, int[] multipliers) {
    final int inf = 1 << 30;
    int n = nums.length, m = multipliers.length;
    int[][] f = new int[m + 1][m + 1];
    for (int i = 0; i <= m; i++) {
      Arrays.fill(f[i], -inf);
    }
    f[0][0] = 0;
    int ans = -inf;
    for (int i = 0; i <= m; ++i) {
      for (int j = 0; j <= m - i; ++j) {
        int k = i + j - 1;
        if (i > 0) {
          f[i][j] = Math.max(f[i][j], f[i - 1][j] + multipliers[k] * nums[i - 1]);
        }
        if (j > 0) {
          f[i][j] = Math.max(f[i][j], f[i][j - 1] + multipliers[k] * nums[n - j]);
        }
        if (i + j == m) {
          ans = Math.max(ans, f[i][j]);
        }
      }
    }
    return ans;
  }
}
class Solution {
public:
  int maximumScore(vector<int>& nums, vector<int>& multipliers) {
    const int inf = 1 << 30;
    int n = nums.size(), m = multipliers.size();
    vector<vector<int>> f(m + 1, vector<int>(m + 1, -inf));
    f[0][0] = 0;
    int ans = -inf;
    for (int i = 0; i <= m; ++i) {
      for (int j = 0; j <= m - i; ++j) {
        int k = i + j - 1;
        if (i > 0) {
          f[i][j] = max(f[i][j], f[i - 1][j] + multipliers[k] * nums[i - 1]);
        }
        if (j > 0) {
          f[i][j] = max(f[i][j], f[i][j - 1] + multipliers[k] * nums[n - j]);
        }
        if (i + j == m) {
          ans = max(ans, f[i][j]);
        }
      }
    }
    return ans;
  }
};
func maximumScore(nums []int, multipliers []int) int {
  const inf int = 1 << 30
  n, m := len(nums), len(multipliers)
  f := make([][]int, m+1)
  for i := range f {
    f[i] = make([]int, m+1)
    for j := range f {
      f[i][j] = -inf
    }
  }
  f[0][0] = 0
  ans := -inf
  for i := 0; i <= m; i++ {
    for j := 0; j <= m-i; j++ {
      k := i + j - 1
      if i > 0 {
        f[i][j] = max(f[i][j], f[i-1][j]+multipliers[k]*nums[i-1])
      }
      if j > 0 {
        f[i][j] = max(f[i][j], f[i][j-1]+multipliers[k]*nums[n-j])
      }
      if i+j == m {
        ans = max(ans, f[i][j])
      }
    }
  }
  return ans
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文