知识、真相与谎言
本章到目前为止,我们已经探索了分布式系统与运行在单台计算机上的程序的不同之处:没有共享内存,只有通过可变延迟的不可靠网络传递的消息,系统可能遭受部分失效,不可靠的时钟和处理暂停。
如果你不习惯于分布式系统,那么这些问题的后果就会让人迷惑不解。网络中的一个节点无法确切地知道任何事情——它只能根据它通过网络接收到(或没有接收到)的消息进行猜测。节点只能通过交换消息来找出另一个节点所处的状态(存储了哪些数据,是否正确运行等等)。如果远程节点没有响应,则无法知道它处于什么状态,因为网络中的问题不能可靠地与节点上的问题区分开来。
这些系统的讨论与哲学有关:在系统中什么是真什么是假?如果感知和测量的机制都是不可靠的,那么关于这些知识我们又能多么确定呢?软件系统应该遵循我们对物理世界所期望的法则,如因果关系吗?
幸运的是,我们不需要去搞清楚生命的意义。在分布式系统中,我们可以陈述关于行为(系统模型)的假设,并以满足这些假设的方式设计实际系统。算法可以被证明在某个系统模型中正确运行。这意味着即使底层系统模型提供了很少的保证,也可以实现可靠的行为。
但是,尽管可以使软件在不可靠的系统模型中表现良好,但这并不是可以直截了当实现的。在本章的其余部分中,我们将进一步探讨分布式系统中的知识和真理的概念,这将有助于我们思考我们可以做出的各种假设以及我们可能希望提供的保证。在 第 9 章 中,我们将着眼于分布式系统的一些例子,这些算法在特定的假设条件下提供了特定的保证。
真理由多数所定义
设想一个具有不对称故障的网络:一个节点能够接收发送给它的所有消息,但是来自该节点的任何传出消息被丢弃或延迟【19】。即使该节点运行良好,并且正在接收来自其他节点的请求,其他节点也无法听到其响应。经过一段时间后,其他节点宣布它已经死亡,因为他们没有听到节点的消息。这种情况就像梦魇一样: 半断开(semi-disconnected) 的节点被拖向墓地,敲打尖叫道 我没死! ——但是由于没有人能听到它的尖叫,葬礼队伍继续以坚忍的决心继续行进。
在一个稍微不那么梦魇的场景中,半断开的节点可能会注意到它发送的消息没有被其他节点确认,因此意识到网络中必定存在故障。尽管如此,节点被其他节点错误地宣告为死亡,而半连接的节点对此无能为力。
第三种情况,想象一个经历了一个长时间 停止世界垃圾收集暂停(stop-the-world GC Pause) 的节点。节点的所有线程被 GC 抢占并暂停一分钟,因此没有请求被处理,也没有响应被发送。其他节点等待,重试,不耐烦,并最终宣布节点死亡,并将其丢到灵车上。最后,GC 完成,节点的线程继续,好像什么也没有发生。其他节点感到惊讶,因为所谓的死亡节点突然从棺材中抬起头来,身体健康,开始和旁观者高兴地聊天。GC 后的节点最初甚至没有意识到已经经过了整整一分钟,而且自己已被宣告死亡。从它自己的角度来看,从最后一次与其他节点交谈以来,几乎没有经过任何时间。
这些故事的寓意是,节点不一定能相信自己对于情况的判断。分布式系统不能完全依赖单个节点,因为节点可能随时失效,可能会使系统卡死,无法恢复。相反,许多分布式算法都依赖于法定人数,即在节点之间进行投票(参阅 读写法定人数 ):决策需要来自多个节点的最小投票数,以减少对于某个特定节点的依赖。
这也包括关于宣告节点死亡的决定。如果法定数量的节点宣告另一个节点已经死亡,那么即使该节点仍感觉自己活着,它也必须被认为是死的。个体节点必须遵守法定决定并下台。
最常见的法定人数是超过一半的绝对多数(尽管其他类型的法定人数也是可能的)。多数法定人数允许系统继续工作,如果单个节点发生故障(三个节点可以容忍单节点故障;五个节点可以容忍双节点故障)。系统仍然是安全的,因为在这个制度中只能有一个多数——不能同时存在两个相互冲突的多数决定。当我们在 第 9 章 中讨论 共识算法(consensus algorithms) 时,我们将更详细地讨论法定人数的应用。
领导者与锁定
通常情况下,一些东西在一个系统中只能有一个。例如:
- 数据库分区的领导者只能有一个节点,以避免 脑裂(split brain) (参阅 http://127.0.0.1:4000/处理节点宕机 )。
- 特定资源的锁或对象只允许一个事务/客户端持有,以防同时写入和损坏。
- 一个特定的用户名只能被一个用户所注册,因为用户名必须唯一标识一个用户。
在分布式系统中实现这一点需要注意:即使一个节点认为它是 天选者(the choosen one) (分区的负责人,锁的持有者,成功获取用户名的用户的请求处理程序),但这并不一定意味着有法定人数的节点同意!一个节点可能以前是领导者,但是如果其他节点在此期间宣布它死亡(例如,由于网络中断或 GC 暂停),则它可能已被降级,且另一个领导者可能已经当选。
如果一个节点继续表现为 天选者 ,即使大多数节点已经声明它已经死了,则在考虑不周的系统中可能会导致问题。这样的节点能以自己赋予的权能向其他节点发送消息,如果其他节点相信,整个系统可能会做一些不正确的事情。
例如, 图 8-4 显示了由于不正确的锁实现导致的数据损坏错误。 (这个错误不仅仅是理论上的:HBase 曾经有这个问题【74,75】)假设你要确保一个存储服务中的文件一次只能被一个客户访问,因为如果多个客户试图写对此,该文件将被损坏。您尝试通过在访问文件之前要求客户端从锁定服务获取租约来实现此目的。
图 8-4 分布式锁的实现不正确:客户端 1 认为它仍然具有有效的租约,即使它已经过期,从而破坏了存储中的文件
这个问题就是我们先前在 进程暂停 中讨论过的一个例子:如果持有租约的客户端暂停太久,它的租约将到期。另一个客户端可以获得同一文件的租约,并开始写入文件。当暂停的客户端回来时,它认为(不正确)它仍然有一个有效的租约,并继续写入文件。结果,客户的写入冲突和损坏的文件。
防护令牌
当使用锁或租约来保护对某些资源(如 图 8-4 中的文件存储)的访问时,需要确保一个被误认为自己是 天选者 的节点不能中断系统的其它部分。实现这一目标的一个相当简单的技术就是 防护(fencing) ,如 图 8-5 所示
图 8-5 只允许以增加 http://127.0.0.1:4000/屏蔽令牌的顺序进行写操作,从而保证存储安全
我们假设每次锁定服务器授予锁或租约时,它还会返回一个 防护令牌(fencing token) ,这个数字在每次授予锁定时都会增加(例如,由锁定服务增加)。然后,我们可以要求客户端每次向存储服务发送写入请求时,都必须包含当前的 http://127.0.0.1:4000/屏蔽令牌。
在 图 8-5 中,客户端 1 以 33 的令牌获得租约,但随后进入一个长时间的停顿并且租约到期。客户端 2 以 34 的令牌(该数字总是增加)获取租约,然后将其写入请求发送到存储服务,包括 34 的令牌。稍后,客户端 1 恢复生机并将其写入存储服务,包括其令牌值 33.但是,存储服务器会记住它已经处理了一个具有更高令牌编号(34)的写入,因此它会拒绝带有令牌 33 的请求。
如果将 ZooKeeper 用作锁定服务,则可将事务标识 zxid
或节点版本 cversion
用作 http://127.0.0.1:4000/屏蔽令牌。由于它们保证单调递增,因此它们具有所需的属性【74】。
请注意,这种机制要求资源本身在检查令牌方面发挥积极作用,通过拒绝使用旧的令牌,而不是已经被处理的令牌来进行写操作——仅仅依靠客户端检查自己的锁状态是不够的。对于不明确支持 http://127.0.0.1:4000/屏蔽令牌的资源,可能仍然可以解决此限制(例如,在文件存储服务的情况下,可以将防护令牌包含在文件名中)。但是,为了避免在锁的保护之外处理请求,需要进行某种检查。
在服务器端检查一个令牌可能看起来像是一个缺点,但这可以说是一件好事:一个服务假定它的客户总是守规矩并不明智,因为使用客户端的人与运行服务的人优先级非常不一样【76】。因此,任何服务保护自己免受意外客户的滥用是一个好主意。
拜占庭故障
http://127.0.0.1:4000/屏蔽令牌可以检测和阻止无意中发生错误的节点(例如,因为它尚未发现其租约已过期)。但是,如果节点有意破坏系统的保证,则可以通过使用假 http://127.0.0.1:4000/屏蔽令牌发送消息来轻松完成此操作。
在本书中,我们假设节点是不可靠但诚实的:它们可能很慢或者从不响应(由于故障),并且它们的状态可能已经过时(由于 GC 暂停或网络延迟),但是我们假设如果节点它做出了回应,它正在说出 真相 :尽其所知,它正在按照协议的规则扮演其角色。
如果存在节点可能 撒谎 (发送任意错误或损坏的响应)的风险,则分布式系统的问题变得更困难了——例如,如果节点可能声称其实际上没有收到特定的消息。这种行为被称为 拜占庭故障(Byzantine fault) , 在不信任的环境中达成共识的问题被称为拜占庭将军问题 【77】。
拜占庭将军问题
拜占庭将军问题是所谓 两将军问题 的概括【78】,它想象两个将军需要就战斗计划达成一致的情况。由于他们在两个不同的地点建立了营地,他们只能通过信使进行沟通,信使有时会被延迟或丢失(就像网络中的信息包一样)。我们将在 第 9 章 讨论这个共识问题。
在这个拜占庭式的问题中,有 n 位将军需要同意,他们的努力因为有一些叛徒在他们中间而受到阻碍。大多数的将军都是忠诚的,因而发出了真实的信息,但是叛徒可能会试图通过发送虚假或不真实的信息来欺骗和混淆他人(在试图保持未被发现的同时)。事先并不知道叛徒是谁。
拜占庭是后来成为君士坦丁堡的古希腊城市,现在在土耳其的伊斯坦布尔。没有任何历史证据表明拜占庭将军比其他地方更容易出现阴谋和阴谋。相反,这个名字来源于拜占庭式的过度复杂,官僚,迂回等意义,早在计算机之前就已经在政治中被使用了【79】。Lamport 想要选一个不会冒犯任何读者的国家,他被告知将其称为阿尔巴尼亚将军问题并不是一个好主意【80】。
当一个系统在部分节点发生故障、不遵守协议、甚至恶意攻击、扰乱网络时仍然能继续正确工作,称之为 拜占庭容错(Byzantine fault-tolerant) 的,在特定场景下,这种担忧在是有意义的:
- 在航空航天环境中,计算机内存或 CPU 寄存器中的数据可能被辐射破坏,导致其以任意不可预知的方式响应其他节点。由于系统故障将非常昂贵(例如,飞机撞毁和炸死船上所有人员,或火箭与国际空间站相撞),飞行控制系统必须容忍拜占庭故障【81,82】。
- 在多个参与组织的系统中,一些参与者可能会试图欺骗或欺骗他人。在这种情况下,节点仅仅信任另一个节点的消息是不安全的,因为它们可能是出于恶意的目的而被发送的。例如,像比特币和其他区块链一样的对等网络可以被认为是让互不信任的各方同意交易是否发生的一种方式,而不依赖于中央当局【83】。
然而,在本书讨论的那些系统中,我们通常可以安全地假设没有拜占庭式的错误。在你的数据中心里,所有的节点都是由你的组织控制的(所以他们可以信任),辐射水平足够低,内存损坏不是一个大问题。制作拜占庭容错系统的协议相当复杂【84】,而容错嵌入式系统依赖于硬件层面的支持【81】。在大多数服务器端数据系统中,部署拜占庭容错解决方案的成本使其变得不切实际。
Web 应用程序确实需要预期受终端用户控制的客户端(如 Web 浏览器)的任意和恶意行为。这就是为什么输入验证,清理和输出转义如此重要:例如,防止 SQL 注入和跨站点脚本。但是,我们通常不使用拜占庭容错协议,而只是让服务器决定什么是客户端行为,而不是允许的。在没有这种中心授权的对等网络中,拜占庭容错更为重要。
软件中的一个错误可能被认为是拜占庭式的错误,但是如果您将相同的软件部署到所有节点上,那么拜占庭式的容错算法不能为您节省。大多数拜占庭式容错算法要求超过三分之二的节点能够正常工作(即,如果有四个节点,最多只能有一个故障)。要使用这种方法对付 bug,你必须有四个独立的相同软件的实现,并希望一个 bug 只出现在四个实现之一中。
同样,如果一个协议可以保护我们免受漏洞,安全妥协和恶意攻击,那么这将是有吸引力的。不幸的是,这也是不现实的:在大多数系统中,如果攻击者可以渗透一个节点,那他们可能会渗透所有这些节点,因为它们可能运行相同的软件。因此传统机制(认证,访问控制,加密,防火墙等)仍然是攻击者的主要保护措施。
弱谎言形式
尽管我们假设节点通常是诚实的,但值得向软件中添加防止 撒谎 弱形式的机制——例如,由硬件问题导致的无效消息,软件错误和错误配置。这种保护机制并不是完全的拜占庭容错,因为它们不能抵挡决心坚定的对手,但它们仍然是简单而实用的步骤,以提高可靠性。例如:
- 由于硬件问题或操作系统,驱动程序,路由器等中的错误,网络数据包有时会受到损坏。通常,内建于 TCP 和 UDP 中的校验和会俘获损坏的数据包,但有时它们会逃避检测【85,86,87】 。简单的措施通常是采用充分的保护来防止这种破坏,例如应用程序级协议中的校验和。
- 可公开访问的应用程序必须仔细清理来自用户的任何输入,例如检查值是否在合理的范围内,并限制字符串的大小以防止通过大内存分配拒绝服务。防火墙后面的内部服务可能能够在对输入进行较不严格的检查的情况下逃脱,但是一些基本的理智检查(例如,在协议解析中)是一个好主意。
- NTP 客户端可以配置多个服务器地址。同步时,客户端联系所有的服务器,估计它们的误差,并检查大多数服务器是否在对某个时间范围内达成一致。只要大多数的服务器没问题,一个配置错误的 NTP 服务器报告的时间会被当成特异值从同步中排除【37】。使用多个服务器使 NTP 更健壮(比起只用单个服务器来)。
系统模型与现实
已经有很多算法被设计以解决分布式系统问题——例如,我们将在 第 9 章 讨论共识问题的解决方案。为了有用,这些算法需要容忍我们在本章中讨论的分布式系统的各种故障。
算法的编写方式并不过分依赖于运行的硬件和软件配置的细节。这又要求我们以某种方式将我们期望在系统中发生的错误形式化。我们通过定义一个系统模型来做到这一点,这个模型是一个抽象,描述一个算法可能承担的事情。 关于定时假设,三种系统模型是常用的:
同步模型
同步模型(synchronous model) 假设网络延迟,进程暂停和和时钟误差都是有界限的。这并不意味着完全同步的时钟或零网络延迟;这只意味着你知道网络延迟,暂停和时钟漂移将永远不会超过某个固定的上限【88】。同步模型并不是大多数实际系统的现实模型,因为(如本章所讨论的)无限延迟和暂停确实会发生。
部分同步模型
部分同步(partial synchronous) 意味着一个系统在大多数情况下像一个同步系统一样运行,但有时候会超出网络延迟,进程暂停和时钟漂移的界限【88】。这是很多系统的现实模型:大多数情况下,网络和进程表现良好,否则我们永远无法完成任何事情,但是我们必须承认,在任何时刻假设都存在偶然被破坏的事实。发生这种情况时,网络延迟,暂停和时钟错误可能会变得相当大。
异步模型
在这个模型中,一个算法不允许对时机做任何假设——事实上它甚至没有时钟(所以它不能使用超时)。一些算法被设计为可用于异步模型,但非常受限。
进一步来说,除了时间问题,我们还要考虑 节点失效 。三种最常见的节点系统模型是:
崩溃-停止故障
在 崩溃停止(crash-stop) 模型中,算法可能会假设一个节点只能以一种方式失效,即通过崩溃。这意味着节点可能在任意时刻突然停止响应,此后该节点永远消失——它永远不会回来。
崩溃-恢复故障
我们假设节点可能会在任何时候崩溃,但也许会在未知的时间之后再次开始响应。在 崩溃-恢复(crash-recovery) 模型中,假设节点具有稳定的存储(即,非易失性磁盘存储)且会在崩溃中保留,而内存中的状态会丢失。
拜占庭(任意)故障
节点可以做(绝对意义上的)任何事情,包括试图戏弄和欺骗其他节点,如上一节所述。
对于真实系统的建模,具有 崩溃-恢复故障(crash-recovery) 的 部分同步模型(partial synchronous) 通常是最有用的模型。分布式算法如何应对这种模型?
算法的正确性
为了定义算法是正确的,我们可以描述它的属性。例如,排序算法的输出具有如下特性:对于输出列表中的任何两个不同的元素,左边的元素比右边的元素小。这只是定义对列表进行排序含义的一种形式方式。
同样,我们可以写下我们想要的分布式算法的属性来定义它的正确含义。例如,如果我们正在为一个锁生成 http://127.0.0.1:4000/屏蔽令牌(参阅 http://127.0.0.1:4000/屏蔽令牌 ),我们可能要求算法具有以下属性:
唯一性
没有两个 http://127.0.0.1:4000/屏蔽令牌请求返回相同的值。
单调序列
如果请求 $x$ 返回了令牌 $t_x$,并且请求$y$返回了令牌$t_y$,并且 $x$ 在 $y$ 开始之前已经完成,那么$t_x <t_y$。
可用性
请求防护令牌并且不会崩溃的节点,最终会收到响应。
如果一个系统模型中的算法总是满足它在我们假设可能发生的所有情况下的性质,那么这个算法是正确的。但这如何有意义?如果所有的节点崩溃,或者所有的网络延迟突然变得无限长,那么没有任何算法能够完成任何事情。
安全性和活性
为了澄清这种情况,有必要区分两种不同的性质: 安全性(safety) 和 活性(liveness) 。在刚刚给出的例子中, 唯一性(uniqueness) 和 单调序列(monotonic sequence) 是安全属性,但 可用性 是 活性(liveness) 属性。
这两种性质有什么区别?一个试金石就是,活性属性通常在定义中通常包括 最终 一词。 (是的,你猜对了——最终一致性是一个活性属性【89】。)
安全性通常被非正式地定义为, 没有坏事发生 ,而活性通常就类似: 最终好事发生 。但是,最好不要过多地阅读那些非正式的定义,因为好与坏的含义是主观的。安全性和活性的实际定义是精确的和数学的【90】:
- 如果安全属性被违反,我们可以指向一个特定的时间点(例如,如果违反了唯一性属性,我们可以确定重复的防护令牌返回的特定操作) 。违反安全属性后,违规行为不能撤销——损失已经发生。
- 活性属性反过来:在某个时间点(例如,一个节点可能发送了一个请求,但还没有收到响应),它可能不成立,但总是希望在未来(即通过接受答复)。
区分安全性和活性属性的一个优点是可以帮助我们处理困难的系统模型。对于分布式算法,在系统模型的所有可能情况下,要求始终保持安全属性是常见的【88】。也就是说,即使所有节点崩溃,或者整个网络出现故障,算法仍然必须确保它不会返回错误的结果(即保证安全性得到满足)。
但是,对于活性属性,我们可以提出一些注意事项:例如,只有在大多数节点没有崩溃的情况下,只有当网络最终从中断中恢复时,我们才可以说请求需要接收响应。部分同步模型的定义要求系统最终返回到同步状态——即任何网络中断的时间段只会持续一段有限的时间,然后进行修复。
将系统模型映射到现实世界
安全性和活性属性以及系统模型对于推理分布式算法的正确性非常有用。然而,在实践中实施算法时,现实的混乱事实再一次地让你咬牙切齿,很明显系统模型是对现实的简化抽象。
例如,在故障恢复模型中的算法通常假设稳定存储器中的数据经历了崩溃。但是,如果磁盘上的数据被破坏,或者由于硬件错误或错误配置导致数据被清除,会发生什么情况?如果服务器存在固件错误并且在重新启动时无法识别其硬盘驱动器,即使驱动器已正确连接到服务器,也会发生什么情况?
法定人数算法(参见 读写法定人数 )依赖节点来记住它声称存储的数据。如果一个节点可能患有健忘症,忘记了以前存储的数据,这会打破法定条件,从而破坏算法的正确性。也许需要一个新的系统模型,在这个模型中,我们假设稳定的存储大多存在崩溃,但有时可能会丢失。但是那个模型就变得更难以推理了。
算法的理论描述可以简单宣称一些事在假设上是不会发生的——在非拜占庭式系统中。但实际上我们还是需要对可能发生和不可能发生的故障做出假设,真实世界的实现,仍然会包括处理 假设上不可能 情况的代码,即使代码可能就是 printf("you sucks")
和 exit(666)
,实际上也就是留给运维来擦屁股。(这可以说是计算机科学和软件工程间的一个差异)。
这并不是说理论上抽象的系统模型是毫无价值的,恰恰相反。它们对于将实际系统的复杂性降低到一个我们可以推理的可处理的错误是非常有帮助的,以便我们能够理解这个问题,并试图系统地解决这个问题。我们可以证明算法是正确的,通过显示它们的属性总是保持在某个系统模型中
证明算法正确并不意味着它在真实系统上的实现必然总是正确的。但这迈出了很好的第一步,因为理论分析可以发现算法中的问题,这种问题可能会在现实系统中长期潜伏,直到你的假设(例如,时间)因为不寻常的情况被打破。理论分析与经验测试同样重要。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论