- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Calculation of Cook’s distance
Cook’s distance is used to estimate the influence of a data point when performing least squares regression analysis. It is one of the standard plots for linear regression in R and provides another example of the applicationof leave-one-out resampling.
\[D_i = \frac{\sum_{j=1}^n (\hat Y_j - \hat Y_{j(i)})^2}{p\ \text{MSE}}\]
The calculation of Cook’s distance involves the fitting of \(n\) regression models, so we want to do this as efficiently as possible.
def cook_dist(X, y, model): """Vectorized version of Cook's distance.""" n = len(X) fitted = model(y, X).fit() yhat = fitted.predict(X) p = len(fitted.params) mse = np.sum((yhat - y)**2.0)/n denom = p*mse idx = np.arange(n) return np.array([np.sum((yhat - model(y[idx!=i], X[idx!=i]).fit().predict(X))**2.0) for i in range(n)])/denom
import statsmodels.api as sm
# create data set with outliers nobs = 100 X = np.random.random((nobs, 2)) X = sm.add_constant(X) beta = [1, .1, .5] e = np.random.random(nobs) y = np.dot(X, beta) + e y[[7, 29, 78]] *= 3
# use Cook's distance to identify outliers model = sm.OLS d = cook_dist(X, y, model) plt.stem(d);
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论