返回介绍

solution / 1100-1199 / 1103.Distribute Candies to People / README_EN

发布于 2024-06-17 01:03:23 字数 4377 浏览 0 评论 0 收藏 0

1103. Distribute Candies to People

中文文档

Description

We distribute some number of candies, to a row of n = num_people people in the following way:

We then give 1 candy to the first person, 2 candies to the second person, and so on until we give n candies to the last person.

Then, we go back to the start of the row, giving n + 1 candies to the first person, n + 2 candies to the second person, and so on until we give 2 * n candies to the last person.

This process repeats (with us giving one more candy each time, and moving to the start of the row after we reach the end) until we run out of candies.  The last person will receive all of our remaining candies (not necessarily one more than the previous gift).

Return an array (of length num_people and sum candies) that represents the final distribution of candies.

 

Example 1:

Input: candies = 7, num_people = 4
Output: [1,2,3,1]
Explanation:
On the first turn, ans[0] += 1, and the array is [1,0,0,0].
On the second turn, ans[1] += 2, and the array is [1,2,0,0].
On the third turn, ans[2] += 3, and the array is [1,2,3,0].
On the fourth turn, ans[3] += 1 (because there is only one candy left), and the final array is [1,2,3,1].

Example 2:

Input: candies = 10, num_people = 3
Output: [5,2,3]
Explanation: 
On the first turn, ans[0] += 1, and the array is [1,0,0].
On the second turn, ans[1] += 2, and the array is [1,2,0].
On the third turn, ans[2] += 3, and the array is [1,2,3].
On the fourth turn, ans[0] += 4, and the final array is [5,2,3].

 

Constraints:

  • 1 <= candies <= 10^9
  • 1 <= num_people <= 1000

Solutions

Solution 1: Simulation

We can directly simulate the process of each person receiving candies, following the rules described in the problem.

The time complexity is $O(\max(\sqrt{candies}, num_people))$, and the space complexity is $O(num_people)$. Here, $candies$ is the number of candies.

class Solution:
  def distributeCandies(self, candies: int, num_people: int) -> List[int]:
    ans = [0] * num_people
    i = 0
    while candies:
      ans[i % num_people] += min(candies, i + 1)
      candies -= min(candies, i + 1)
      i += 1
    return ans
class Solution {
  public int[] distributeCandies(int candies, int num_people) {
    int[] ans = new int[num_people];
    for (int i = 0; candies > 0; ++i) {
      ans[i % num_people] += Math.min(candies, i + 1);
      candies -= Math.min(candies, i + 1);
    }
    return ans;
  }
}
class Solution {
public:
  vector<int> distributeCandies(int candies, int num_people) {
    vector<int> ans(num_people);
    for (int i = 0; candies > 0; ++i) {
      ans[i % num_people] += min(candies, i + 1);
      candies -= min(candies, i + 1);
    }
    return ans;
  }
};
func distributeCandies(candies int, num_people int) []int {
  ans := make([]int, num_people)
  for i := 0; candies > 0; i++ {
    ans[i%num_people] += min(candies, i+1)
    candies -= min(candies, i+1)
  }
  return ans
}
function distributeCandies(candies: number, num_people: number): number[] {
  const ans: number[] = Array(num_people).fill(0);
  for (let i = 0; candies > 0; ++i) {
    ans[i % num_people] += Math.min(candies, i + 1);
    candies -= Math.min(candies, i + 1);
  }
  return ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文