返回介绍

Dimension reduction via PCA

发布于 2025-02-25 23:43:53 字数 1269 浏览 0 评论 0 收藏 0

We have the sepctral decomposition of the covariance matrix

\[A = Q^{-1}\Lambda Q\]

Suppose \(\Lambda\) is a rank \(p\) matrix. To reduce the dimensionality to \(k \le p\), we simply set all but the first \(k\) values of the diagonal of \(\Lambda\) to zero. This is equivvalent to ignoring all except the first \(k\) principal componnents.

What does this achieve? Recall that \(A\) is a covariance matrix, and the trace of the matrix is the overall variability, since it is the sum of the variances.

A
array([[ 0.628 ,  0.2174],
       [ 0.2174,  0.2083]])
A.trace()
0.8364
e, v = np.linalg.eig(A)
D = np.diag(e)
D
array([[ 0.7203,  0.    ],
       [ 0.    ,  0.116 ]])
D.trace()
0.8364
D[0,0]/D.trace()
0.8612

Since the trace is invariant under change of basis, the total variability is also unchaged by PCA. By keeping only the first \(k\) principal components, we can still “explain” \(\sum_{i=1}^k e[i]/\sum{e}\) of the total variability. Sometimes, the degree of dimension reduction is specified as keeping enough principal components so that (say) \(90\%\) fo the total variability is exlained.

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文