返回介绍

Search for a Range

发布于 2025-02-22 13:01:24 字数 3844 浏览 0 评论 0 收藏 0

Source

Problem

Given a sorted array of n integers, find the starting and ending position of a given target value.

If the target is not found in the array, return [-1, -1] .

Example

Given [5, 7, 7, 8, 8, 10] and target value 8 , return [3, 4] .

Challenge

O(log n) time.

题解

Python

first/last position 结合。

class Solution:
  """
  @param A : a list of integers
  @param target : an integer to be searched
  @return : a list of length 2, [index1, index2]
  """
  def searchRange(self, A, target):
    ret = [-1, -1]
    if not A:
      return ret

    # find the first position of target
    st, ed = 0, len(A) - 1
    while st + 1 < ed:
      mid = (st + ed) / 2
      if A[mid] == target:
        ed = mid
      elif A[mid] < target:
        st = mid
      else:
        ed = mid
    if A[st] == target:
      ret[0] = st
    elif A[ed] == target:
      ret[0] = ed
    # find the last position of target
    st, ed = 0, len(A) - 1
    while st + 1 < ed:
      mid = (st + ed) / 2
      if A[mid] == target:
        st = mid
      elif A[mid] < target:
        st = mid
      else:
        ed = mid
    if A[ed] == target:
      ret[1] = ed
    elif A[st] == target:
      ret[1] = st

    return ret

C++

class Solution {
public:
  vector<int> searchRange(vector<int>& nums, int target) {
    vector<int> result = {-1, -1};
    if (nums.empty()) return result;

    int lb = -1, ub = nums.size();
    while (lb + 1 < ub) {
      int mid = lb + (ub - lb) / 2;
      if (nums[mid] < target) lb = mid;
      else ub = mid;
    }

    if ((ub < nums.size()) && (nums[ub] == target)) result[0] = ub;
    else return result;

    ub = nums.size();
    while (lb + 1 < ub) {
      int mid = lb + (ub - lb) / 2;
      if (nums[mid] > target) ub = mid;
      else lb = mid;
    }
    result[1] = ub - 1;
    return result;
  }
};

Java

lower/upper bound 的结合,做两次搜索即可。

public class Solution {
  /**
   *@param A : an integer sorted array
   *@param target :  an integer to be inserted
   *return : a list of length 2, [index1, index2]
   */
  public int[] searchRange(int[] A, int target) {
    int[] result = new int[]{-1, -1};
    if (A == null || A.length == 0) return result;

    int lb = -1, ub = A.length;
    // lower bound
    while (lb + 1 < ub) {
      int mid = lb + (ub - lb) / 2;
      if (A[mid] < target) {
        lb = mid;
      } else {
        ub = mid;
      }
    }
    // whether A[lb + 1] == target, check lb + 1 first
    if ((lb + 1 < A.length) && (A[lb + 1] == target)) {
      result[0] = lb + 1;
    } else {
      result[0] = -1;
      result[1] = -1;
      // target is not in the array
      return result;
    }

    // upper bound, since ub >= lb, we do not reset lb
    ub = A.length;
    while (lb + 1 < ub) {
      int mid = lb + (ub - lb) / 2;
      if (A[mid] > target) {
        ub = mid;
      } else {
        lb = mid;
      }
    }
    // target must exist in the array
    result[1] = ub - 1;

    return result;
  }
}

源码分析

  1. 首先对输入做异常处理,数组为空或者长度为 0
  2. 分 lower/upper bound 两次搜索,注意如果在 lower bound 阶段未找到目标值时,upper bound 也一定找不到。
  3. A[lb + 1] 时一定要注意判断索引是否越界!

复杂度分析

两次二分搜索,时间复杂度仍为 O(logn)O(\log n)O(logn).

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文