返回介绍

光环效应与群体的智慧

发布于 2024-10-13 17:31:45 字数 3008 浏览 0 评论 0 收藏 0

如果你赞同一个总统的政见,你可能也会喜爱他的声音及着装。喜爱(或讨厌)某个人就会喜爱(或讨厌)这个人的全部—包括你还没有观察到的方面—这种倾向就叫做光环效应。这个术语已在心理学领域使用了长达一个世纪,但仍然没能成为日常用语。这是一件憾事,因为光环效应这个说法很好地诠释了我们生活中普遍存在的一种偏见,这种偏见在我们塑造对人与环境的看法时起着很大的作用。系统 1 可以通过很多比现实更简单却更连贯的方式来表现这个世界,光环效应就是其中一种。

你在某派对上遇到了个名叫琼的女士,发现她既漂亮又善谈。现在,她的名字再次出现,并有可能是被叫去捐款。你知道琼有多慷慨吗?正确答案是:你事实上什么都不知道,因为没有理由可以让你认为善于社交的人在慈善方面会表现得慷慨。但你喜爱琼,当你想到琼时,那种喜爱的感觉会再次涌上心头。你自己慷慨,也喜欢慷慨的人。通过联想,你预先倾向于相信琼是慷慨的。现在,你认为琼是慷慨的,你可能会比以前更喜欢她,因为你又增加了一条令她讨你喜欢的特点。

在琼的这则故事里,我们并没有她慷慨程度的真正证据,而是凭借自己对她的情感回应作出猜测,用猜测弥补证据的缺失。在其他情况下,证据会逐渐出现,由第一印象产生的感觉会影响你对事物的解读。所罗门·阿希(Solomon Asch)的一个实验堪称心理学实验中不朽的经典。他对两个人进行了描述,并要求其他人对这两人的个性进行评论。你认为艾伦和本这两人怎么样?

艾伦:聪明—勤奋—冲动—爱挑剔—固执—忌妒心强

本:忌妒心强—固执—爱挑剔—冲动—勤奋—聪明

如果你像我们一样,你就会更喜欢艾伦一些。前几条列出的性格特征会改变后面出现的特征的含义。我们认为聪明人有理由固执,并且还会尊重他这一点。然而,一个忌妒心强又固执的人如果还很聪明的话,他身上就带有一些危险性。光环效应也可以化解歧义:如同“bank”这个单词一样,“固执”这个形容词也是有歧义的,但将它放在一定情境中歧义便会被化解。

对于这个研究主题,还有许多衍生出来的实验。在一项研究中,受试者要先考虑一下描述艾伦的前三个形容词,然后再考虑剩下那三个描述艾伦的形容词,但实验人员告诉他们,后三个词是用来描述另外一个人的。随后,当受试者根据这些描述假想出两个人时,实验人员问他们,这 6 个形容词是否有可能用来形容同一个人时,大多数受试者都认为不可能!

我们对一个人性格特征的观察顺序是随机的。然而,顺序的确很重要,因为光环效应注重第一印象,而后续信息在很大程度上都被消解掉了。在我刚做教授时,我评价学生论文的方式很传统。我会顺序一次取一本论文,一边读一边打分,然后计算出总成绩,之后再接着批改下一个学生的论文。最后,我注意到自己对每一本论文的评估都出奇地相似。我开始怀疑我的评分产生了光环效应,即第一次评分对接下来的所有评分都产生了一定影响。这样的机制十分简单:在我给某学生的第一份论文打了高分后,再碰到有模糊或是有歧义的陈述时都会对这个学生手下留情。这种做法看似合理。一个学生能将第一份论文写好的话,就不应在第二份论文中犯低级错误!但我评分的方法却存在一个严重的问题。如果某个学生写了两份论文,一份论点有力,另一份却经不起推敲,我则会因为批改的顺序不同而给出不同的分数。我曾经告诉学生两份论文的评分标准是一样的,但事实却并非如此:相比第二份论文来说,第一份论文对于总分的影响更大。所以这样的做法是不可取的。

我采取了一种新的做法。我阅读并批改了某个学生第一个问题的答案,然后接着改下一个学生的相关论述,而不是按顺序读完第一个学生的整本论文才评阅下一份。我确定将所有分数都写在了论文集的封底,以避免在批改第二份论文时出现偏见(即使是无意识的)。在改变方法后不久,出现了一个令人担忧的结果:我对评分的自信程度比原来更低了。原因在于我频繁地感到一种不适。当我对某个学生的第二份论文感到失望时,便在他的论文集封底记下一个低分,但却偶然发现我给他的第一份论文打了最高分。我也注意到了我会不经意地改变尚未写下来的分数以缩小两份论文之间的分数差,并且,我很难克制住自己不这样做。我对同一个学生的论文评分通常相差巨大。这样的前后不一使我感到不确定和沮丧。

我现在对自己的评分行为感到失望和不自信,但我认为这是件好事,因为它表明现在这个方法比原来的有进步。我先前所感到的一致性是伪造出来的,它使我有了认知放松之感,我的系统 2 也欣然接受了最后的分数。采用新方法之后,虽然第一个问题深深影响到我对之后学生的评估,但我允许自己这样做,因而学生某些问题答得好和不好的分数差别也就不是我有意为之的了。但我发现同一个学生在回答一个问题时表现优异,而对另一个问题的解答却很糟糕。当我改变方法时,这种令人感到不适的前后不一致就显露了出来:它不仅反映出随便拿一个问题去衡量学生水平的做法是不恰当的,还反映出我自己打出的分数同样不可靠。

我采取的避免光环效应的评卷方法遵循了一个普遍原则:消除错误的关联!为了了解这一原则的工作原理,我们设想一下:向大量观察者展示一些装有硬币的玻璃罐,让他们估计一下每一个罐里硬币的数量。詹姆斯·索罗维基(James Surowiecki)在他最为畅销的著作《群体的智慧》(The Wisdom of Crowds)一书中解释道,一个人单独完成这个任务的效果并不理想,但一群人共同作出判断时准确率就很高。有些人高估了硬币的数量,另一些人低估了它,但对所有判断进行平均估算得出的平均值就会趋近于准确值。这种机制很容易理解:每个人都观察着同一个玻璃罐,他们的判断都基于一个共同的基础。另一方面,每个人犯的错误都与其他人的错误无关,(在没有系统性偏见的情况下)这些错误的平均值趋近于零。然而,只有在每个人的观察相互独立、每个人所犯错误之间不相关联的情况下,降低错误率的奇迹才能出现。如果观察者持有相同偏见,就算将他们的判断汇总起来也难以降低错误率。允许不同观察者之间相互影响会减少样本量,进而影响小组估值的准确率。

想要从大量证据来源中获取最有用的信息,你应设法使这些来源相互独立。这也是警察办案时所遵循的规则。如果某个案件有多个目击证人,在录口供之前,这些证人是不能获准讨论案件的。这样做不仅是为了防止不怀好意的证人相互串通,还避免了没有偏见的证人相互影响。交流过各自目击过程的证人容易在证词中犯相似的错误,降低了他们所提供信息的总体价值。减少信息来源中的冗赘信息总是没错的。

企业高管需要花大量时间主持会议,独立判断原则(及解除错误关联)可以直接应用到这些工作中。一条简单的规则就能发挥作用:在开始讨论某个问题之前,先让与会的每一位成员各自写下简短的意见阐明自己的观点。这个过程很好地利用了小组里不同知识和见解的价值。而开放性讨论这一常规做法总会注重那些发言早而又强势的人的意见,使得其他人一味附和他们的观点。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文