- MongoDB 简介
- NoSQL 简介
- MongoDB 适用场景
- MongoDB 环境安装
- MongoDB 快速入门
- MongoDB 基本操作
- 聚合 aggregate
- MongoDB 进阶篇
- MongoDB 高级篇
- MongoDB命令汇总
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
$group
将集合中的文档分组,可用于统计结果。
示例
集合 sales 内容如下:
db.sales.insert([ { "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-03-01T08:00:00Z") }, { "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-03-01T09:00:00Z") }, { "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-03-15T09:00:00Z") }, { "_id" : 4, "item" : "xyz", "price" : 5, "quantity" : 20, "date" : ISODate("2014-04-04T11:21:39.736Z") }, { "_id" : 5, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-04-04T21:23:13.331Z") } ])Group by Month, Day, and Year
下面的聚合操作使用 $group 将文档按月、日、年组分组, 计算平均数量以及每个组的文档数:
db.sales.aggregate(
[
{
$group : {
_id : { month: { $month: "$date" }, day: { $dayOfMonth: "$date" }, year: { $year: "$date" } },
averageQuantity: { $avg: "$quantity" },
count: { $sum: 1 }
}
}
]
)
该操作返回以下结果:
{ "_id" : { "month" : 3, "day" : 15, "year" : 2014 }, "averageQuantity" : 10, "count" : 1 }
{ "_id" : { "month" : 4, "day" : 4, "year" : 2014 }, "averageQuantity" : 15, "count" : 2 }
{ "_id" : { "month" : 3, "day" : 1, "year" : 2014 }, averageQuantity" : 1.5, "count" : 2 }
Group by null
下面的聚合操作指定_id 等于null的空组,计算总价格和平均数量以及集合中的所有文件数:
db.sales.aggregate(
[
{
$group : {
_id : null,
totalPrice: { $sum: { $multiply: [ "$price", "$quantity" ] } },
averageQuantity: { $avg: "$quantity" },
count: { $sum: 1 }
}
}
]
)
该操作返回以下结果:
{ "_id" : null, "totalPrice" : 290, "averageQuantity" : 8.6, "count" : 5 }
检索不同的值 (类似sql Distinct)
下面的聚合操作使用 $group 将item字段去重,以检索不同的项目值:
db.sales.aggregate( [ { $group : { _id : "$item" } } ] )
该操作返回以下结果:
{ "_id" : "xyz" }
{ "_id" : "jkl" }
{ "_id" : "abc" }
类似sql语句: select _id from sales group by _id
透视数据
现有集合 books 内容如下:
db.books.insert([ { "_id" : 8751, "title" : "The Banquet", "author" : "Dante", "copies" : 2 }, { "_id" : 8752, "title" : "Divine Comedy", "author" : "Dante", "copies" : 1 }, { "_id" : 8645, "title" : "Eclogues", "author" : "Dante", "copies" : 2 }, { "_id" : 7000, "title" : "The Odyssey", "author" : "Homer", "copies" : 10 }, { "_id" : 7020, "title" : "Iliad", "author" : "Homer", "copies" : 10 }, ])Group title by author
下面的聚合操作 按authors分组, 收集books中的titles
db.books.aggregate(
[
{ $group : { _id : "$author", books: { $push: "$title" } } }
]
)
该操作返回以下结果:
{ "_id" : "Homer", "books" : [ "The Odyssey", "Iliad" ] }
{ "_id" : "Dante", "books" : [ "The Banquet", "Divine Comedy", "Eclogues" ] }
Group Documents by author
下面的聚合操作 按author分组,收集 $$ROOT 系统变量(代表文档自身)
db.books.aggregate(
[
{ $group : { _id : "$author", books: { $push: "$$ROOT" } } }
]
)
该操作返回以下结果:
{
"_id" : "Homer",
"books" :
[
{ "_id" : 7000, "title" : "The Odyssey", "author" : "Homer", "copies" : 10 },
{ "_id" : 7020, "title" : "Iliad", "author" : "Homer", "copies" : 10 }
]
}
{
"_id" : "Dante",
"books" :
[
{ "_id" : 8751, "title" : "The Banquet", "author" : "Dante", "copies" : 2 },
{ "_id" : 8752, "title" : "Divine Comedy", "author" : "Dante", "copies" : 1 },
{ "_id" : 8645, "title" : "Eclogues", "author" : "Dante", "copies" : 2 }
]
}
SQL VS Aggregation 区别
https://docs.mongodb.com/manual/reference/sql-aggregation-comparison/
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论