返回介绍

3.5 锁的内存语义

发布于 2024-08-18 10:09:30 字数 8145 浏览 0 评论 0 收藏 0

众所周知,锁可以让临界区互斥执行。这里将介绍锁的另一个同样重要,但常常被忽视的功能:锁的内存语义。

3.5.1 锁的释放-获取建立的happens-before关系

锁是Java并发编程中最重要的同步机制。锁除了让临界区互斥执行外,还可以让释放锁的线程向获取同一个锁的线程发送消息。

下面是锁释放-获取的示例代码。

class MonitorExample {
    int a = 0;
    public synchronized void writer() {     // 1
  a++;              // 2
    }                   // 3
    public synchronized void reader() {      // 4
  int i = a;                // 5
  ……
    }                   // 6
}

假设线程A执行writer()方法,随后线程B执行reader()方法。根据happens-before规则,这个过程包含的happens-before关系可以分为3类。

1)根据程序次序规则,1 happens-before 2,2 happens-before 3;4 happens-before 5,5 happens-before 6。

2)根据监视器锁规则,3 happens-before 4。

3)根据happens-before的传递性,2 happens-before 5。

上述happens-before关系的图形化表现形式如图3-24所示。

图3-24 happens-before关系图

在图3-24中,每一个箭头链接的两个节点,代表了一个happens-before关系。黑色箭头表示程序顺序规则;橙色箭头表示监视器锁规则;蓝色箭头表示组合这些规则后提供的happens-before保证。

图3-24表示在线程A释放了锁之后,随后线程B获取同一个锁。在上图中,2 happens-before 5。因此,线程A在释放锁之前所有可见的共享变量,在线程B获取同一个锁之后,将立刻变得对B线程可见。

3.5.2 锁的释放和获取的内存语义

当线程释放锁时,JMM会把该线程对应的本地内存中的共享变量刷新到主内存中。以上面的MonitorExample程序为例,A线程释放锁后,共享数据的状态示意图如图3-25所示。

图3-25 共享数据的状态示意图

当线程获取锁时,JMM会把该线程对应的本地内存置为无效。从而使得被监视器保护的临界区代码必须从主内存中读取共享变量。图3-26是锁获取的状态示意图。

图3-26 锁获取的状态示意图

对比锁释放-获取的内存语义与volatile写-读的内存语义可以看出:锁释放与volatile写有相同的内存语义;锁获取与volatile读有相同的内存语义。

下面对锁释放和锁获取的内存语义做个总结。

线程A释放一个锁,实质上是线程A向接下来将要获取这个锁的某个线程发出了(线程A对共享变量所做修改的)消息。

线程B获取一个锁,实质上是线程B接收了之前某个线程发出的(在释放这个锁之前对共享变量所做修改的)消息。

线程A释放锁,随后线程B获取这个锁,这个过程实质上是线程A通过主内存向线程B发送消息。

3.5.3 锁内存语义的实现

本文将借助ReentrantLock的源代码,来分析锁内存语义的具体实现机制。

请看下面的示例代码。

class ReentrantLockExample {
    int a = 0;
    ReentrantLock lock = new ReentrantLock();
    public void writer() {
  lock.lock();       // 获取锁
  try {
      a++;
  } f  inally {
      lock.unlock();  // 释放锁
  }
    }
    public void reader () {
  lock.lock();      // 获取锁
  try {
      int i = a;
      ……
  } f  inally {
      lock.unlock();  // 释放锁
  }
    }
}

在ReentrantLock中,调用lock()方法获取锁;调用unlock()方法释放锁。

ReentrantLock的实现依赖于Java同步器框架AbstractQueuedSynchronizer(本文简称之为AQS)。AQS使用一个整型的volatile变量(命名为state)来维护同步状态,马上我们会看到,这个volatile变量是ReentrantLock内存语义实现的关键。

图3-27是ReentrantLock的类图(仅画出与本文相关的部分)。

图3-27 ReentrantLock的类图

ReentrantLock分为公平锁和非公平锁,我们首先分析公平锁。

使用公平锁时,加锁方法lock()调用轨迹如下。

1)ReentrantLock:lock()。

2)FairSync:lock()。

3)AbstractQueuedSynchronizer:acquire(int arg)。

4)ReentrantLock:tryAcquire(int acquires)。

在第4步真正开始加锁,下面是该方法的源代码。

protected final boolean tryAcquire(int acquires) {
    final Thread current = Thread.currentThread();
    int c = getState();    // 获取锁的开始,首先读volatile变量state
    if (c == 0) {
  if (isFirst(current) &&
      compareAndSetState(0, acquires)) {
    setExclusiveOwnerThread(current);
    return true;
      }
    }
    else if (current == getExclusiveOwnerThread()) {
  int nextc = c + acquires;
  if (nextc < 0)  
      throw new Error("Maximum lock count exceeded");
  setState(nextc);
  return true;
    }
    return false;
}

从上面源代码中我们可以看出,加锁方法首先读volatile变量state。

在使用公平锁时,解锁方法unlock()调用轨迹如下。

1)ReentrantLock:unlock()。

2)AbstractQueuedSynchronizer:release(int arg)。

3)Sync:tryRelease(int releases)。

在第3步真正开始释放锁,下面是该方法的源代码。

protected final boolean tryRelease(int releases) {
       int c = getState() - releases;
       if (Thread.currentThread() != getExclusiveOwnerThread())
     throw new IllegalMonitorStateException();
       boolean free = false;
       if (c == 0) {
     free = true;
     setExclusiveOwnerThread(null);
       }
       setState(c);     // 释放锁的最后,写volatile变量state
       return free;
}

从上面的源代码可以看出,在释放锁的最后写volatile变量state。

公平锁在释放锁的最后写volatile变量state,在获取锁时首先读这个volatile变量。根据volatile的happens-before规则,释放锁的线程在写volatile变量之前可见的共享变量,在获取锁的线程读取同一个volatile变量后将立即变得对获取锁的线程可见。

现在我们来分析非公平锁的内存语义的实现。非公平锁的释放和公平锁完全一样,所以这里仅仅分析非公平锁的获取。使用非公平锁时,加锁方法lock()调用轨迹如下。

1)ReentrantLock:lock()。

2)NonfairSync:lock()。

3)AbstractQueuedSynchronizer:compareAndSetState(int expect,int update)。

在第3步真正开始加锁,下面是该方法的源代码。

protected final boolean compareAndSetState(int expect, int update) {
       return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

该方法以原子操作的方式更新state变量,本文把Java的compareAndSet()方法调用简称为CAS。JDK文档对该方法的说明如下:如果当前状态值等于预期值,则以原子方式将同步状态设置为给定的更新值。此操作具有volatile读和写的内存语义。

这里我们分别从编译器和处理器的角度来分析,CAS如何同时具有volatile读和volatile写的内存语义。

前文我们提到过,编译器不会对volatile读与volatile读后面的任意内存操作重排序;编译器不会对volatile写与volatile写前面的任意内存操作重排序。组合这两个条件,意味着为了同时实现volatile读和volatile写的内存语义,编译器不能对CAS与CAS前面和后面的任意内存操作重排序。

下面我们来分析在常见的intel X86处理器中,CAS是如何同时具有volatile读和volatile写的内存语义的。

下面是sun.misc.Unsafe类的compareAndSwapInt()方法的源代码。

    public final native boolean compareAndSwapInt(Object o, long offset,
                         int expected,
                         int x);

可以看到,这是一个本地方法调用。这个本地方法在openjdk中依次调用的c++代码为:unsafe.cpp,atomic.cpp和atomic_windows_x86.inline.hpp。这个本地方法的最终实现在openjdk的如下位置:openjdk-7-fcs-src-b147-27_jun_2011\openjdk\hotspot\src\os_cpu\windows_x86\vm\atomic_windows_x86.inline.hpp(对应于Windows操作系统,X86处理器)。下面是对应于intel X86处理器的源代码的片段。

inline jint     Atomic::cmpxchg    (jint     exchange_value, volatile jint*     dest, 
  jint     compare_value) {
     // alternative for InterlockedCompareExchange
     int mp = os::is_MP();
     __asm {
       mov edx, dest
       mov ecx, exchange_value
       mov eax, compare_value
       LOCK_IF_MP(mp)
       cmpxchg dword ptr [edx], ecx
    }
}

如上面源代码所示,程序会根据当前处理器的类型来决定是否为cmpxchg指令添加lock前缀。如果程序是在多处理器上运行,就为cmpxchg指令加上lock前缀(Lock Cmpxchg)。反之,如果程序是在单处理器上运行,就省略lock前缀(单处理器自身会维护单处理器内的顺序一致性,不需要lock前缀提供的内存屏障效果)。

intel的手册对lock前缀的说明如下。

1)确保对内存的读-改-写操作原子执行。在Pentium及Pentium之前的处理器中,带有lock前缀的指令在执行期间会锁住总线,使得其他处理器暂时无法通过总线访问内存。很显然,这会带来昂贵的开销。从Pentium 4、Intel Xeon及P6处理器开始,Intel使用缓存锁定(Cache Locking)来保证指令执行的原子性。缓存锁定将大大降低lock前缀指令的执行开销。

2)禁止该指令,与之前和之后的读和写指令重排序。

3)把写缓冲区中的所有数据刷新到内存中。

上面的第2点和第3点所具有的内存屏障效果,足以同时实现volatile读和volatile写的内存语义。

经过上面的分析,现在我们终于能明白为什么JDK文档说CAS同时具有volatile读和volatile写的内存语义了。

现在对公平锁和非公平锁的内存语义做个总结。

公平锁和非公平锁释放时,最后都要写一个volatile变量state。

公平锁获取时,首先会去读volatile变量。

非公平锁获取时,首先会用CAS更新volatile变量,这个操作同时具有volatile读和volatile写的内存语义。

从本文对ReentrantLock的分析可以看出,锁释放-获取的内存语义的实现至少有下面两种方式。

1)利用volatile变量的写-读所具有的内存语义。

2)利用CAS所附带的volatile读和volatile写的内存语义。

3.5.4 concurrent包的实现

由于Java的CAS同时具有volatile读和volatile写的内存语义,因此Java线程之间的通信现在有了下面4种方式。

1)A线程写volatile变量,随后B线程读这个volatile变量。

2)A线程写volatile变量,随后B线程用CAS更新这个volatile变量。

3)A线程用CAS更新一个volatile变量,随后B线程用CAS更新这个volatile变量。

4)A线程用CAS更新一个volatile变量,随后B线程读这个volatile变量。

Java的CAS会使用现代处理器上提供的高效机器级别的原子指令,这些原子指令以原子方式对内存执行读-改-写操作,这是在多处理器中实现同步的关键(从本质上来说,能够支持原子性读-改-写指令的计算机,是顺序计算图灵机的异步等价机器,因此任何现代的多处理器都会去支持某种能对内存执行原子性读-改-写操作的原子指令)。同时,volatile变量的读/写和CAS可以实现线程之间的通信。把这些特性整合在一起,就形成了整个concurrent包得以实现的基石。如果我们仔细分析concurrent包的源代码实现,会发现一个通用化的实现模式。

首先,声明共享变量为volatile。

然后,使用CAS的原子条件更新来实现线程之间的同步。

同时,配合以volatile的读/写和CAS所具有的volatile读和写的内存语义来实现线程之间的通信。

AQS,非阻塞数据结构和原子变量类(java.util.concurrent.atomic包中的类),这些concurrent包中的基础类都是使用这种模式来实现的,而concurrent包中的高层类又是依赖于这些基础类来实现的。从整体来看,concurrent包的实现示意图如3-28所示。

图3-28 concurrent包的实现示意图

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文