返回介绍

Using Multiprocessing

发布于 2025-02-25 23:44:03 字数 2238 浏览 0 评论 0 收藏 0

import multiprocessing

num_procs = multiprocessing.cpu_count()
num_procs
4
def pi_multiprocessing(n):
    """Split a job of length n into num_procs pieces."""
    import multiprocessing
    m = multiprocessing.cpu_count()
    pool = multiprocessing.Pool(m)
    results = pool.map(pi_cython, [n/m]*m)
    pool.close()
    return np.mean(results)

For small jobs, the cost of spawning processes dominates

n = int(1e5)
%timeit pi_cython(n)
%timeit pi_multiprocessing(n)
100 loops, best of 3: 1.95 ms per loop
10 loops, best of 3: 32.6 ms per loop

For larger jobs, we see the expected linear speedup

n = int(1e7)
%timeit pi_numpy(n)
%timeit pi_multiprocessing(n)
1 loops, best of 3: 718 ms per loop
10 loops, best of 3: 148 ms per loop

Not all tasks are embarassingly parallel. In these problems, we need to communicate across parallel workers. There are two ways to do this - via shared memory (exemplar is OpenMP) and by explicit communication mechanisms (exemplar is MPI). Multiprocessing (and GPU computing) can use both mechanisms.

See MOTW for examples of communicating across processes with multiprocessing.

Using shared memory can lead to race conditions

from multiprocessing import Pool, Value, Array, Lock, current_process

n = 4
val = Value('i')
arr = Array('i', n)

val.value = 0
for i in range(n):
    arr[i] = 0

def count1(i):
    "Everyone competes to write to val."""
    val.value += 1

def count2(i):
    """Each process has its own slot in arr to write to."""
    ix = current_process().pid % n
    arr[ix] += 1

pool = Pool(n)
pool.map(count1, range(1000))
pool.map(count2, range(1000))

pool.close()
print val.value
print sum(arr)
500
1000

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文