- GUI
- Windows API tutorial
- Introduction to Windows API
- Windows API main functions
- System functions in Windows API
- Strings in Windows API
- Date & time in Windows API
- A window in Windows API
- First steps in UI
- Windows API menus
- Windows API dialogs
- Windows API controls I
- Windows API controls II
- Windows API controls III
- Advanced controls in Windows API
- Custom controls in Windows API
- The GDI in Windows API
- PyQt4 tutorial
- PyQt5 tutorial
- Qt4 tutorial
- Introduction to Qt4 toolkit
- Qt4 utility classes
- Strings in Qt4
- Date and time in Qt4
- Working with files and directories in Qt4
- First programs in Qt4
- Menus and toolbars in Qt4
- Layout management in Qt4
- Events and signals in Qt4
- Qt4 Widgets
- Qt4 Widgets II
- Painting in Qt4
- Custom widget in Qt4
- The Breakout game in Qt4
- Qt5 tutorial
- Introduction to Qt5 toolkit
- Strings in Qt5
- Date and time in Qt5
- Containers in Qt5
- Working with files and directories in Qt5
- First programs in Qt5
- Menus and toolbars in Qt5
- Layout management in Qt5
- Events and signals in Qt5
- Qt5 Widgets
- Qt5 Widgets II
- Painting in Qt5
- Custom widget in Qt5
- Snake in Qt5
- The Breakout game in Qt5
- PySide tutorial
- Tkinter tutorial
- Tcl/Tk tutorial
- Qt Quick tutorial
- Java Swing tutorial
- JavaFX tutorial
- Java SWT tutorial
- wxWidgets tutorial
- Introduction to wxWidgets
- wxWidgets helper classes
- First programs in wxWidgets
- Menus and toolbars in wxWidgets
- Layout management in wxWidgets
- Events in wxWidgets
- Dialogs in wxWidgets
- wxWidgets widgets
- wxWidgets widgets II
- Drag and Drop in wxWidgets
- Device Contexts in wxWidgets
- Custom widgets in wxWidgets
- The Tetris game in wxWidgets
- wxPython tutorial
- Introduction to wxPython
- First Steps
- Menus and toolbars
- Layout management in wxPython
- Events in wxPython
- wxPython dialogs
- Widgets
- Advanced widgets in wxPython
- Drag and drop in wxPython
- Internationalisation
- Application skeletons in wxPython
- The GDI
- Mapping modes
- Creating custom widgets
- Tips and Tricks
- wxPython Gripts
- The Tetris game in wxPython
- C# Winforms Mono tutorial
- Java Gnome tutorial
- Introduction to Java Gnome
- First steps in Java Gnome
- Layout management in Java Gnome
- Layout management II in Java Gnome
- Menus in Java Gnome
- Toolbars in Java Gnome
- Events in Java Gnome
- Widgets in Java Gnome
- Widgets II in Java Gnome
- Advanced widgets in Java Gnome
- Dialogs in Java Gnome
- Pango in Java Gnome
- Drawing with Cairo in Java Gnome
- Drawing with Cairo II
- Nibbles in Java Gnome
- QtJambi tutorial
- GTK+ tutorial
- Ruby GTK tutorial
- GTK# tutorial
- Visual Basic GTK# tutorial
- PyGTK tutorial
- Introduction to PyGTK
- First steps in PyGTK
- Layout management in PyGTK
- Menus in PyGTK
- Toolbars in PyGTK
- Signals & events in PyGTK
- Widgets in PyGTK
- Widgets II in PyGTK
- Advanced widgets in PyGTK
- Dialogs in PyGTK
- Pango
- Pango II
- Drawing with Cairo in PyGTK
- Drawing with Cairo II
- Snake game in PyGTK
- Custom widget in PyGTK
- PHP GTK tutorial
- C# Qyoto tutorial
- Ruby Qt tutorial
- Visual Basic Qyoto tutorial
- Mono IronPython Winforms tutorial
- Introduction
- First steps in IronPython Mono Winforms
- Layout management
- Menus and toolbars
- Basic Controls in Mono Winforms
- Basic Controls II in Mono Winforms
- Advanced Controls in Mono Winforms
- Dialogs
- Drag & drop in Mono Winforms
- Painting
- Painting II in IronPython Mono Winforms
- Snake in IronPython Mono Winforms
- The Tetris game in IronPython Mono Winforms
- FreeBASIC GTK tutorial
- Jython Swing tutorial
- JRuby Swing tutorial
- Visual Basic Winforms tutorial
- JavaScript GTK tutorial
- Ruby HTTPClient tutorial
- Ruby Faraday tutorial
- Ruby Net::HTTP tutorial
- Java 2D games tutorial
- Java 2D tutorial
- Cairo graphics tutorial
- PyCairo tutorial
- HTML5 canvas tutorial
- Python tutorial
- Python language
- Interactive Python
- Python lexical structure
- Python data types
- Strings in Python
- Python lists
- Python dictionaries
- Python operators
- Keywords in Python
- Functions in Python
- Files in Python
- Object-oriented programming in Python
- Modules
- Packages in Python
- Exceptions in Python
- Iterators and Generators
- Introspection in Python
- Ruby tutorial
- PHP tutorial
- Visual Basic tutorial
- Visual Basic
- Visual Basic lexical structure
- Basics
- Visual Basic data types
- Strings in Visual Basic
- Operators
- Flow control
- Visual Basic arrays
- Procedures & functions in Visual Basic
- Organizing code in Visual Basic
- Object-oriented programming
- Object-oriented programming II in Visual Basic
- Collections in Visual Basic
- Input & output
- Tcl tutorial
- C# tutorial
- Java tutorial
- AWK tutorial
- Jetty tutorial
- Tomcat Derby tutorial
- Jtwig tutorial
- Android tutorial
- Introduction to Android development
- First Android application
- Android Button widgets
- Android Intents
- Layout management in Android
- Android Spinner widget
- SeekBar widget
- Android ProgressBar widget
- Android ListView widget
- Android Pickers
- Android menus
- Dialogs
- Drawing in Android
- Java EE 5 tutorials
- Introduction
- Installing Java
- Installing NetBeans 6
- Java Application Servers
- Resin CGIServlet
- JavaServer Pages, (JSPs)
- Implicit objects in JSPs
- Shopping cart
- JSP & MySQL Database
- Java Servlets
- Sending email in a Servlet
- Creating a captcha in a Servlet
- DataSource & DriverManager
- Java Beans
- Custom JSP tags
- Object relational mapping with iBATIS
- Jsoup tutorial
- MySQL tutorial
- MySQL quick tutorial
- MySQL storage engines
- MySQL data types
- Creating, altering and dropping tables in MySQL
- MySQL expressions
- Inserting, updating, and deleting data in MySQL
- The SELECT statement in MySQL
- MySQL subqueries
- MySQL constraints
- Exporting and importing data in MySQL
- Joining tables in MySQL
- MySQL functions
- Views in MySQL
- Transactions in MySQL
- MySQL stored routines
- MySQL Python tutorial
- MySQL Perl tutorial
- MySQL C API programming tutorial
- MySQL Visual Basic tutorial
- MySQL PHP tutorial
- MySQL Java tutorial
- MySQL Ruby tutorial
- MySQL C# tutorial
- SQLite tutorial
- SQLite C tutorial
- SQLite PHP tutorial
- SQLite Python tutorial
- SQLite Perl tutorial
- SQLite Ruby tutorial
- SQLite C# tutorial
- SQLite Visual Basic tutorial
- PostgreSQL C tutorial
- PostgreSQL Python tutorial
- PostgreSQL Ruby tutorial
- PostgreSQL PHP tutorial
- PostgreSQL Java tutorial
- Apache Derby tutorial
- SQLAlchemy tutorial
- MongoDB PHP tutorial
- MongoDB Java tutorial
- MongoDB JavaScript tutorial
- MongoDB Ruby tutorial
- Spring JdbcTemplate tutorial
- JDBI tutorial
PostgreSQL Python tutorial
This is a Python programming tutorial for the PostgreSQL database. It covers the basics of PostgreSQL programming with the Python language. You might also want to check the Python tutorial or PostgreSQL PHP tutorial on ZetCode. SQLAlchemy tutorial covers SQLAlchemy SQL Toolkit and Object Relational Mapper.
Several libraries exist for connecting to the PostgreSQL database from the Python language. In this tutorial we will use the psycopg2
module. It is a PostgreSQL database adapter for the Python programming language. According to the module documentation it is currently the most popular Python module for the PostgreSQL database. It is mostly implemented in C as a libpq
wrapper.
About PostgreSQL database
PostgreSQL is a powerful, open source object-relational database system. It is a multi-user database management system. It runs on multiple platforms including Linux, FreeBSD, Solaris, Microsoft Windows and Mac OS X. PostgreSQL is developed by the PostgreSQL Global Development Group.
Prerequisites
To work with this tutorial, we must have Python language, PostgreSQL database and psycopg2
language binding installed on our system.
$ sudo apt-get install postgresql
On an Ubuntu based system we can install the PostgreSQL database using the above command.
$ sudo update-rc.d -f postgresql remove Removing any system startup links for /etc/init.d/postgresql ... /etc/rc0.d/K21postgresql /etc/rc1.d/K21postgresql /etc/rc2.d/S19postgresql /etc/rc3.d/S19postgresql /etc/rc4.d/S19postgresql /etc/rc5.d/S19postgresql /etc/rc6.d/K21postgresql
If we install the PostgreSQL database from packages, it is automatically added to the start up scripts of the operating system. If we are only learning to work with the database, it is unnecessary to start the database each time we boot the system. The above command removes any system startup links for the PostgreSQL database.
$ /etc/init.d/postgresql status Running clusters: 9.1/main $ service postgresql status Running clusters: 9.1/main
We check if the PostgreSQL server is running. If not, we need to start the server.
$ sudo service postgresql start * Starting PostgreSQL 9.1 database server [ OK ]
On Ubuntu Linux we can start the server with the service postgresql start
command.
$ sudo service postgresql stop [sudo] password for janbodnar: * Stopping PostgreSQL 9.1 database server [ OK ]
We use the service postgresql stop
command to stop the PostgreSQL server.
$ sudo apt-get install python-psycopg2
Here we install the psycopg2
module on a Ubuntu system.
$ sudo -u postgres createuser janbodnar Shall the new role be a superuser? (y/n) n Shall the new role be allowed to create databases? (y/n) y Shall the new role be allowed to create more new roles? (y/n) n
We create a new role in the PostgreSQL system. We allow it to have ability to create new databases. A role is a user in a database world. Roles are separate from operating system users. We have created a new user without the -W
option, e.g. we have not specified a password. This enables us to connect to a database with this user without password authentication. Note that this works only on localhost.
$ sudo -u postgres createdb testdb -O janbodnar
The createdb
command creates a new PostgreSQL database with the owner janbodnar.
Version
In the first code example, we will get the version of the PostgreSQL database.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None try: con = psycopg2.connect(database='testdb', user='janbodnar') cur = con.cursor() cur.execute('SELECT version()') ver = cur.fetchone() print ver except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close()
In the above Python script we connect to the previously created testdb database. We execute an SQL statement which returns the version of the PostgreSQL database.
import psycopg2
The psycopg2
is a Python module which is used to work with the PostgreSQL database.
con = None
We initialize the con variable to None. In case we could not create a connection to the database (for example the disk is full), we would not have a connection variable defined. This would lead to an error in the finally clause.
con = psycopg2.connect(database='testdb', user='janbodnar')
The connect()
method creates a new database session and returns a connection object. The user was created without a password. On localhost, we can omit the password option. Otherwise, it must be specified.
cur = con.cursor() cur.execute('SELECT version()')
From the connection, we get the cursor object. The cursor is used to traverse the records from the result set. We call the execute()
method of the cursor and execute the SQL statement.
ver = cur.fetchone()
We fetch the data. Since we retrieve only one record, we call the fetchone()
method.
print ver
We print the data that we have retrieved to the console.
except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1)
In case of an exception, we print an error message and exit the script with an error code 1.
finally: if con: con.close())
In the final step, we release the resources.
$ ./version2.py ('PostgreSQL 9.3.5 on i686-pc-linux-gnu, compiled by gcc (Ubuntu 4.8.2-19ubuntu1) 4.8.2, 32-bit',)
Running the version.py
script.
Inserting data
We will create a Cars
table and insert several rows to it.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None try: con = psycopg2.connect("dbname='testdb' user='janbodnar'") cur = con.cursor() cur.execute("CREATE TABLE Cars(Id INTEGER PRIMARY KEY, Name VARCHAR(20), Price INT)") cur.execute("INSERT INTO Cars VALUES(1,'Audi',52642)") cur.execute("INSERT INTO Cars VALUES(2,'Mercedes',57127)") cur.execute("INSERT INTO Cars VALUES(3,'Skoda',9000)") cur.execute("INSERT INTO Cars VALUES(4,'Volvo',29000)") cur.execute("INSERT INTO Cars VALUES(5,'Bentley',350000)") cur.execute("INSERT INTO Cars VALUES(6,'Citroen',21000)") cur.execute("INSERT INTO Cars VALUES(7,'Hummer',41400)") cur.execute("INSERT INTO Cars VALUES(8,'Volkswagen',21600)") con.commit() except psycopg2.DatabaseError, e: if con: con.rollback() print 'Error %s' % e sys.exit(1) finally: if con: con.close()
The above script creates a Cars
table and inserts 8 rows into the table.
cur.execute("CREATE TABLE Cars(Id INTEGER PRIMARY KEY, Name VARCHAR(20), Price INT)")
This SQL statement creates a new Cars
table. The table has three columns.
cur.execute("INSERT INTO Cars VALUES(1,'Audi',52642)") cur.execute("INSERT INTO Cars VALUES(2,'Mercedes',57127)")
These two lines insert two cars into the table.
con.commit()
The changes are committed to the database.
if con: con.rollback()
In case of an error, we roll back any possible changes to our database table.
$ psql testdb psql (9.3.5) Type "help" for help. testdb=> SELECT * FROM Cars; id | name | price ----+------------+-------- 1 | Audi | 52642 2 | Mercedes | 57127 3 | Skoda | 9000 4 | Volvo | 29000 5 | Bentley | 350000 6 | Citroen | 21000 7 | Hummer | 41400 8 | Volkswagen | 21600 (8 rows)
We verify the written data with the psql
tool.
We are going to create the same table. This time using the convenience executemany()
method.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys cars = ( (1, 'Audi', 52642), (2, 'Mercedes', 57127), (3, 'Skoda', 9000), (4, 'Volvo', 29000), (5, 'Bentley', 350000), (6, 'Citroen', 21000), (7, 'Hummer', 41400), (8, 'Volkswagen', 21600) ) con = None try: con = psycopg2.connect("dbname='testdb' user='janbodnar'") cur = con.cursor() cur.execute("DROP TABLE IF EXISTS Cars") cur.execute("CREATE TABLE Cars(Id INT PRIMARY KEY, Name TEXT, Price INT)") query = "INSERT INTO Cars (Id, Name, Price) VALUES (%s, %s, %s)" cur.executemany(query, cars) con.commit() except psycopg2.DatabaseError, e: if con: con.rollback() print 'Error %s' % e sys.exit(1) finally: if con: con.close()
This script drops a Cars
table if it exists and (re)creates it.
cur.execute("DROP TABLE IF EXISTS Cars") cur.execute("CREATE TABLE Cars(Id INT PRIMARY KEY, Name TEXT, Price INT)")
The first SQL statement drops the Cars
table if it exists. The second SQL statement creates the Cars
table.
query = "INSERT INTO Cars (Id, Name, Price) VALUES (%s, %s, %s)"
This is the query that we will use.
cur.executemany(query, cars)
We insert 8 rows into the table using the convenience executemany()
method. The first parameter of this method is a parameterized SQL statement. The second parameter is the data, in the form of tuple of tuples.
Retrieving data
Now that we have inserted some data into the database, we want to retrieve it back.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None try: con = psycopg2.connect("dbname='testdb' user='janbodnar'") cur = con.cursor() cur.execute("SELECT * FROM Cars") rows = cur.fetchall() for row in rows: print row except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close()
In this example, we retrieve all data from the Cars
table.
cur.execute("SELECT * FROM Cars")
This SQL statement selects all data from the Cars
table.
rows = cur.fetchall()
The fetchall()
method gets all records. It returns a result set. Technically, it is a tuple of tuples. Each of the inner tuples represent a row in the table.
for row in rows: print row
We print the data to the console, row by row.
$ ./fetch1.py (1, 'Audi', 52642) (2, 'Mercedes', 57127) (3, 'Skoda', 9000) (4, 'Volvo', 29000) (5, 'Bentley', 350000) (6, 'Citroen', 21000) (7, 'Hummer', 41400) (8, 'Volkswagen', 21600)
This is the output of the example.
Returning all data at a time may not be feasible. We can fetch rows one by one.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None try: con = psycopg2.connect("dbname='testdb' user='janbodnar'") cur = con.cursor() cur.execute("SELECT * FROM Cars") while True: row = cur.fetchone() if row == None: break print row[0], row[1], row[2] except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close()
In this script we connect to the database and fetch the rows of the Cars
table one by one.
while True:
We access the data from the while loop. When we read the last row, the loop is terminated.
row = cur.fetchone() if row == None: break
The fetchone()
method returns the next row from the table. If there is no more data left, it returns None
. In this case we break the loop.
print row[0], row[1], row[2]
The data is returned in the form of a tuple. Here we select records from the tuple. The first is the Id, the second is the car name and the third is the price of the car.
$ ./retrieveonebyone.py 1 Audi 52642 2 Mercedes 57127 3 Skoda 9000 4 Volvo 29000 5 Bentley 350000 6 Citroen 21000 7 Hummer 41400 8 Volkswagen 21600
This is the output of the example.
The dictionary cursor
The default cursor returns the data in a tuple of tuples. When we use a dictionary cursor, the data is sent in a form of Python dictionaries. This way we can refer to the data by their column names.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import psycopg2.extras import sys con = None try: con = psycopg2.connect("dbname='testdb' user='janbodnar'") cursor = con.cursor(cursor_factory=psycopg2.extras.DictCursor) cursor.execute("SELECT * FROM Cars") rows = cursor.fetchall() for row in rows: print "%s %s %s" % (row["id"], row["name"], row["price"]) except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close()
In this example, we print the contents of the Cars
table using the dictionary cursor.
import psycopg2.extras
The dictionary cursor is located in the extras module.
cursor = con.cursor(cursor_factory=psycopg2.extras.DictCursor)
We create a DictCursor
.
for row in rows: print "%s %s %s" % (row["id"], row["name"], row["price"])
The data is accessed by the column names. The column names are folded to lowercase in PostgreSQL (unless quoted) and are case sensitive. Therefore, we have to provide the column names in lowercase.
Parameterized queries
Now we will concern ourselves with parameterized queries. When we use parameterized queries, we use placeholders instead of directly writing the values into the statements. Parameterized queries increase security and performance.
The Python psycopg2
module supports two types of placeholders: ANSI C printf format and the Python extended format.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None uId = 1 uPrice = 62300 try: con = psycopg2.connect("dbname='testdb' user='janbodnar'") cur = con.cursor() cur.execute("UPDATE Cars SET Price=%s WHERE Id=%s", (uPrice, uId)) con.commit() print "Number of rows updated: %d" % cur.rowcount except psycopg2.DatabaseError, e: if con: con.rollback() print 'Error %s' % e sys.exit(1) finally: if con: con.close()
We update a price of one car. In this code example, we use the question mark placeholders.
cur.execute("UPDATE Cars SET Price=%s WHERE Id=%s", (uPrice, uId))
The characters (%s) are placeholders for values. The values are added to the placeholders.
print "Number of rows updated: %d" % cur.rowcount
The rowcount
property returns the number of updated rows. In our case one row was updated.
$ ./parameterized1.py Number of rows updated: 1 testdb=> SELECT * FROM cars WHERE id=1; id | name | price ----+------+------- 1 | Audi | 62300 (1 row)
The price of the car was updated. We check the change with the psql
tool.
The second example uses parameterized statements with Python extended format.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None uid = 3 try: con = psycopg2.connect("dbname='testdb' user='janbodnar'") cur = con.cursor() cur.execute("SELECT * FROM Cars WHERE Id=%(id)s", {'id': uid } ) print cur.fetchone() except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close()
We select a name and a price of a car using pyformat
parameterized statement.
cur.execute("SELECT * FROM Cars WHERE Id=%(id)s", {'id': uid } )
The named placeholders start with a colon character.
$ ./parameterized2.py (3, 'Skoda', 9000)
Output of the example.
Inserting images
In this section, we are going to insert an image to the PostgreSQL database. Note that some people argue against putting images into databases. Here we only show how to do it. We do not talk about technical issues of whether to save images in databases or not.
testdb=> CREATE TABLE Images(Id INT PRIMARY KEY, Data BYTEA);
For this example, we create a new table called Images
. For the images, we use the BYTEA
data type. It allows to store binary strings.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys def readImage(): try: fin = open("woman.jpg", "rb") img = fin.read() return img except IOError, e: print "Error %d: %s" % (e.args[0],e.args[1]) sys.exit(1) finally: if fin: fin.close() try: con = psycopg2.connect(database="testdb", user="janbodnar") cur = con.cursor() data = readImage() binary = psycopg2.Binary(data) cur.execute("INSERT INTO Images(Id, Data) VALUES (1, %s)", (binary,) ) con.commit() except psycopg2.DatabaseError, e: if con: con.rollback() print 'Error %s' % e sys.exit(1) finally: if con: con.close()
In this script, we read an image from the current working directory and write it into the Images
table of the PostgreSQL testdb
database.
try: fin = open("woman.jpg", "rb") img = fin.read() return img
We read binary data from the filesystem. We have a JPG image called woman.jpg
.
binary = psycopg2.Binary(data)
The data is encoded using the psycopg2
Binary
object.
cur.execute("INSERT INTO Images(Id, Data) VALUES (1, %s)", (binary,) )
This SQL statement is used to insert the image into the database.
Reading images
In this section, we are going to perform the reverse operation. We will read an image from the database table.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys def writeImage(data): try: fout = open('woman2.jpg','wb') fout.write(data) except IOError, e: print "Error %d: %s" % (e.args[0], e.args[1]) sys.exit(1) finally: if fout: fout.close() try: con = psycopg2.connect(database="testdb", user="janbodnar") cur = con.cursor() cur.execute("SELECT Data FROM Images LIMIT 1") data = cur.fetchone()[0] writeImage(data) except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close()
We read image data from the images table and write it to another file, which we call woman2.jpg
.
try: fout = open('woman2.jpg','wb') fout.write(data)
We open a binary file in a writing mode. The data from the database is written to the file.
cur.execute("SELECT Data FROM Images LIMIT 1") data = cur.fetchone()[0]
These two lines select and fetch data from the Images
table. We obtain the binary data from the first row.
Metadata
Metadata is information about the data in the database. Metadata in a PostgreSQL database contains information about the tables and columns, in which we store data. Number of rows affected by an SQL statement is a metadata. Number of rows and columns returned in a result set belong to metadata as well.
Metadata in PostgreSQL can be obtained using from the description
property of the cursor object or from the information_schema
table.
Next we will print all rows from the Cars
table with their column names.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None try: con = psycopg2.connect("dbname='testdb' user='janbodnar'") cur = con.cursor() cur.execute('SELECT * FROM Cars') col_names = [cn[0] for cn in cur.description] rows = cur.fetchall() print "%s %-10s %s" % (col_names[0], col_names[1], col_names[2]) for row in rows: print "%2s %-10s %s" % row except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close()
We print the contents of the Cars
table to the console. Now, we include the names of the columns too. The records are aligned with the column names.
col_names = [cn[0] for cn in cur.description]
We get the column names from the description
property of the cursor object.
print "%s %-10s %s" % (col_names[0], col_names[1], col_names[2])
This line prints three column names of the Cars
table.
for row in rows: print "%2s %-10s %s" % row
We print the rows using the for loop. The data is aligned with the column names.
$ ./colnames.py id name price 2 Mercedes 57127 3 Skoda 9000 4 Volvo 29000 5 Bentley 350000 6 Citroen 21000 7 Hummer 41400 8 Volkswagen 21600 1 Audi 62300
Output.
In the following example we will list all tables in the testdb
database.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None try: con = psycopg2.connect(database='testdb', user='janbodnar') cur = con.cursor() cur.execute("""SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'""") rows = cur.fetchall() for row in rows: print row[0] except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close()
The code example prints all available tables in the current database to the terminal.
cur.execute("""SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'""")
The table names are stored inside the system information_schema
table.
$ ./list_tables.py cars images
These were the tables on our system.
Export and import of data
We can export and import data using copy_to()
and copy_from()
methods.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None fout = None try: con = psycopg2.connect(database='testdb', user='janbodnar') cur = con.cursor() fout = open('cars', 'w') cur.copy_to(fout, 'cars', sep="|") except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) except IOError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close() if fout: fout.close()
In the above example, we copy the data from the Cars
table into the cars
file.
fout = open('cars.sql','w')
We open a file where we will write the data from the Cars
table.
cur.copy_to(fout, 'cars', sep="|")
The copy_to
method copies data from the Cars
table to the opened file. The columns are separated with a |
character.
$ cat cars 2|Mercedes|57127 3|Skoda|9000 4|Volvo|29000 5|Bentley|350000 6|Citroen|21000 7|Hummer|41400 8|Volkswagen|21600 1|Audi|62300
These are the contents of the cars
file.
Now we are going to perform a reverse operation. We will import the dumped table back into the database table.
testdb=> DELETE FROM Cars; DELETE 8
We delete the data from the Cars
table.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None f = None try: con = psycopg2.connect(database='testdb', user='janbodnar') cur = con.cursor() f = open('cars', 'r') cur.copy_from(f, 'cars', sep="|") con.commit() except psycopg2.DatabaseError, e: if con: con.rollback() print 'Error %s' % e sys.exit(1) except IOError, e: if con: con.rollback() print 'Error %s' % e sys.exit(1) finally: if con: con.close() if f: f.close()
In this script, we read the contents of the cars file and copy it back to the cars table.
f = open('cars', 'r') cur.copy_from(f, 'cars', sep="|") con.commit()
We open the cars file for reading and copy the contents to the Cars
table. The changes are committed.
SELECT * FROM Cars; id | name | price ----+------------+-------- 2 | Mercedes | 57127 3 | Skoda | 9000 4 | Volvo | 29000 5 | Bentley | 350000 6 | Citroen | 21000 7 | Hummer | 41400 8 | Volkswagen | 21600 1 | Audi | 62300 (8 rows)
The output shows that we have successfully recreated the saved Cars
table.
Transactions
A transaction is an atomic unit of database operations against the data in one or more databases. The effects of all the SQL statements in a transaction can be either all committed to the database or all rolled back.
In psycopg2 module transactions are handled by the connection class. The first command of a connection cursor starts a transaction. (We do not need to enclose our SQL commands by BEGIN
and END
statements to create a transaction. This is handled automatically by psycopg2
.) The following commands are executed in the context of this new transaction. In case of an error, the transaction is aborted and no further commands are executed until the rollback()
method.
The documentation to the psycopg2
module says that the connection is responsible to terminate its transaction, calling either the commit()
or rollback()
method. Committed changes are immediately made persistent into the database. Closing the connection using the close()
method or destroying the connection object (using del or letting it fall out of scope) will result in an implicit rollback()
call.
The psycopg2
module also supports an autocommit mode, where all changes to the tables are immediately effective. To run in autocommit mode, we set the autocommit
property of the connection object to True.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None try: con = psycopg2.connect(database='testdb', user='janbodnar') cur = con.cursor() cur.execute("DROP TABLE IF EXISTS Friends") cur.execute("CREATE TABLE Friends(Id serial PRIMARY KEY, Name VARCHAR(10))") cur.execute("INSERT INTO Friends(Name) VALUES ('Tom')") cur.execute("INSERT INTO Friends(Name) VALUES ('Rebecca')") cur.execute("INSERT INTO Friends(Name) VALUES ('Jim')") cur.execute("INSERT INTO Friends(Name) VALUES ('Robert')") #con.commit() except psycopg2.DatabaseError, e: if con: con.rollback() print 'Error %s' % e sys.exit(1) finally: if con: con.close()
We create a Friends
table and try to fill it with data. However, as we will see, the data will be not committed.
#con.commit()
The commit()
method is commented. If we uncomment the line, the data will be written to the table.
finally: if con: con.close()
The finally
block is always executed. If we have not committed the changes and no error occures (which would roll back the changes) the transaction is still opened. The connection is closed with the close()
method and the transaction is terminated with an implicit call to the rollback()
method.
testdb=> \dt List of relations Schema | Name | Type | Owner --------+---------+-------+----------- public | cars | table | janbodnar public | friends | table | janbodnar public | images | table | janbodnar (3 rows)
Only after we have uncommented the line, the Friends
table is created.
In the autocommit mode, an SQL statement is executed immediately.
#!/usr/bin/python # -*- coding: utf-8 -*- import psycopg2 import sys con = None try: con = psycopg2.connect(database='testdb', user='janbodnar') con.autocommit = True cur = con.cursor() cur.execute("DROP TABLE IF EXISTS Friends") cur.execute("CREATE TABLE Friends(Id serial PRIMARY KEY, Name VARCHAR(10))") cur.execute("INSERT INTO Friends(Name) VALUES ('Jane')") cur.execute("INSERT INTO Friends(Name) VALUES ('Tom')") cur.execute("INSERT INTO Friends(Name) VALUES ('Rebecca')") cur.execute("INSERT INTO Friends(Name) VALUES ('Jim')") cur.execute("INSERT INTO Friends(Name) VALUES ('Robert')") cur.execute("INSERT INTO Friends(Name) VALUES ('Patrick')") except psycopg2.DatabaseError, e: print 'Error %s' % e sys.exit(1) finally: if con: con.close()
In this example, we connect to the database in the autocommit mode. We do not call neither commit()
nor rollback()
methods.
con.autocommit = True
We set the connection to the autocommit mode.
$ ./autocommit.py testdb=> SELECT * FROM Friends; id | name ----+--------- 1 | Jane 2 | Tom 3 | Rebecca 4 | Jim 5 | Robert 6 | Patrick (6 rows)
The data was successfully committed to the Friends
table.
This was the PostgreSQL Python tutorial. You may be also interested in PostgreSQL Ruby tutorial .
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论