返回介绍

solution / 2200-2299 / 2246.Longest Path With Different Adjacent Characters / README_EN

发布于 2024-06-17 01:03:08 字数 5636 浏览 0 评论 0 收藏 0

2246. Longest Path With Different Adjacent Characters

中文文档

Description

You are given a tree (i.e. a connected, undirected graph that has no cycles) rooted at node 0 consisting of n nodes numbered from 0 to n - 1. The tree is represented by a 0-indexed array parent of size n, where parent[i] is the parent of node i. Since node 0 is the root, parent[0] == -1.

You are also given a string s of length n, where s[i] is the character assigned to node i.

Return _the length of the longest path in the tree such that no pair of adjacent nodes on the path have the same character assigned to them._

 

Example 1:

Input: parent = [-1,0,0,1,1,2], s = "abacbe"
Output: 3
Explanation: The longest path where each two adjacent nodes have different characters in the tree is the path: 0 -> 1 -> 3. The length of this path is 3, so 3 is returned.
It can be proven that there is no longer path that satisfies the conditions. 

Example 2:

Input: parent = [-1,0,0,0], s = "aabc"
Output: 3
Explanation: The longest path where each two adjacent nodes have different characters is the path: 2 -> 0 -> 3. The length of this path is 3, so 3 is returned.

 

Constraints:

  • n == parent.length == s.length
  • 1 <= n <= 105
  • 0 <= parent[i] <= n - 1 for all i >= 1
  • parent[0] == -1
  • parent represents a valid tree.
  • s consists of only lowercase English letters.

Solutions

Solution 1

class Solution:
  def longestPath(self, parent: List[int], s: str) -> int:
    def dfs(i: int) -> int:
      mx = 0
      nonlocal ans
      for j in g[i]:
        x = dfs(j) + 1
        if s[i] != s[j]:
          ans = max(ans, mx + x)
          mx = max(mx, x)
      return mx

    g = defaultdict(list)
    for i in range(1, len(parent)):
      g[parent[i]].append(i)
    ans = 0
    dfs(0)
    return ans + 1
class Solution {
  private List<Integer>[] g;
  private String s;
  private int ans;

  public int longestPath(int[] parent, String s) {
    int n = parent.length;
    g = new List[n];
    this.s = s;
    Arrays.setAll(g, k -> new ArrayList<>());
    for (int i = 1; i < n; ++i) {
      g[parent[i]].add(i);
    }
    dfs(0);
    return ans + 1;
  }

  private int dfs(int i) {
    int mx = 0;
    for (int j : g[i]) {
      int x = dfs(j) + 1;
      if (s.charAt(i) != s.charAt(j)) {
        ans = Math.max(ans, mx + x);
        mx = Math.max(mx, x);
      }
    }
    return mx;
  }
}
class Solution {
public:
  int longestPath(vector<int>& parent, string s) {
    int n = parent.size();
    vector<int> g[n];
    for (int i = 1; i < n; ++i) {
      g[parent[i]].push_back(i);
    }
    int ans = 0;
    function<int(int)> dfs = [&](int i) -> int {
      int mx = 0;
      for (int j : g[i]) {
        int x = dfs(j) + 1;
        if (s[i] != s[j]) {
          ans = max(ans, mx + x);
          mx = max(mx, x);
        }
      }
      return mx;
    };
    dfs(0);
    return ans + 1;
  }
};
func longestPath(parent []int, s string) int {
  n := len(parent)
  g := make([][]int, n)
  for i := 1; i < n; i++ {
    g[parent[i]] = append(g[parent[i]], i)
  }
  ans := 0
  var dfs func(int) int
  dfs = func(i int) int {
    mx := 0
    for _, j := range g[i] {
      x := dfs(j) + 1
      if s[i] != s[j] {
        ans = max(ans, x+mx)
        mx = max(mx, x)
      }
    }
    return mx
  }
  dfs(0)
  return ans + 1
}
function longestPath(parent: number[], s: string): number {
  const n = parent.length;
  const g: number[][] = Array.from({ length: n }, () => []);
  for (let i = 1; i < n; ++i) {
    g[parent[i]].push(i);
  }
  let ans = 0;
  const dfs = (i: number): number => {
    let mx = 0;
    for (const j of g[i]) {
      const x = dfs(j) + 1;
      if (s[i] !== s[j]) {
        ans = Math.max(ans, mx + x);
        mx = Math.max(mx, x);
      }
    }
    return mx;
  };
  dfs(0);
  return ans + 1;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文