返回介绍

solution / 2600-2699 / 2670.Find the Distinct Difference Array / README_EN

发布于 2024-06-17 01:03:01 字数 6685 浏览 0 评论 0 收藏 0

2670. Find the Distinct Difference Array

中文文档

Description

You are given a 0-indexed array nums of length n.

The distinct difference array of nums is an array diff of length n such that diff[i] is equal to the number of distinct elements in the suffix nums[i + 1, ..., n - 1] subtracted from the number of distinct elements in the prefix nums[0, ..., i].

Return _the distinct difference array of _nums.

Note that nums[i, ..., j] denotes the subarray of nums starting at index i and ending at index j inclusive. Particularly, if i > j then nums[i, ..., j] denotes an empty subarray.

 

Example 1:

Input: nums = [1,2,3,4,5]
Output: [-3,-1,1,3,5]
Explanation: For index i = 0, there is 1 element in the prefix and 4 distinct elements in the suffix. Thus, diff[0] = 1 - 4 = -3.
For index i = 1, there are 2 distinct elements in the prefix and 3 distinct elements in the suffix. Thus, diff[1] = 2 - 3 = -1.
For index i = 2, there are 3 distinct elements in the prefix and 2 distinct elements in the suffix. Thus, diff[2] = 3 - 2 = 1.
For index i = 3, there are 4 distinct elements in the prefix and 1 distinct element in the suffix. Thus, diff[3] = 4 - 1 = 3.
For index i = 4, there are 5 distinct elements in the prefix and no elements in the suffix. Thus, diff[4] = 5 - 0 = 5.

Example 2:

Input: nums = [3,2,3,4,2]
Output: [-2,-1,0,2,3]
Explanation: For index i = 0, there is 1 element in the prefix and 3 distinct elements in the suffix. Thus, diff[0] = 1 - 3 = -2.
For index i = 1, there are 2 distinct elements in the prefix and 3 distinct elements in the suffix. Thus, diff[1] = 2 - 3 = -1.
For index i = 2, there are 2 distinct elements in the prefix and 2 distinct elements in the suffix. Thus, diff[2] = 2 - 2 = 0.
For index i = 3, there are 3 distinct elements in the prefix and 1 distinct element in the suffix. Thus, diff[3] = 3 - 1 = 2.
For index i = 4, there are 3 distinct elements in the prefix and no elements in the suffix. Thus, diff[4] = 3 - 0 = 3.

 

Constraints:

  • 1 <= n == nums.length <= 50
  • 1 <= nums[i] <= 50

Solutions

Solution 1: Hash Table + Preprocessed Suffix

We can preprocess a suffix array $suf$, where $suf[i]$ represents the number of distinct elements in the suffix $nums[i, …, n - 1]$. During the preprocessing, we use a hash table $s$ to maintain the elements that have appeared in the suffix, so we can query the number of distinct elements in the suffix in $O(1)$ time.

After preprocessing the suffix array $suf$, we clear the hash table $s$, and then traverse the array $nums$ again, using the hash table $s$ to maintain the elements that have appeared in the prefix. The answer at position $i$ is the number of distinct elements in $s$ minus $suf[i + 1]$, that is, $s.size() - suf[i + 1]$.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $nums$.

class Solution:
  def distinctDifferenceArray(self, nums: List[int]) -> List[int]:
    n = len(nums)
    suf = [0] * (n + 1)
    s = set()
    for i in range(n - 1, -1, -1):
      s.add(nums[i])
      suf[i] = len(s)
    s.clear()
    ans = [0] * n
    for i, x in enumerate(nums):
      s.add(x)
      ans[i] = len(s) - suf[i + 1]
    return ans
class Solution {
  public int[] distinctDifferenceArray(int[] nums) {
    int n = nums.length;
    int[] suf = new int[n + 1];
    Set<Integer> s = new HashSet<>();
    for (int i = n - 1; i >= 0; --i) {
      s.add(nums[i]);
      suf[i] = s.size();
    }
    s.clear();
    int[] ans = new int[n];
    for (int i = 0; i < n; ++i) {
      s.add(nums[i]);
      ans[i] = s.size() - suf[i + 1];
    }
    return ans;
  }
}
class Solution {
public:
  vector<int> distinctDifferenceArray(vector<int>& nums) {
    int n = nums.size();
    vector<int> suf(n + 1);
    unordered_set<int> s;
    for (int i = n - 1; i >= 0; --i) {
      s.insert(nums[i]);
      suf[i] = s.size();
    }
    s.clear();
    vector<int> ans(n);
    for (int i = 0; i < n; ++i) {
      s.insert(nums[i]);
      ans[i] = s.size() - suf[i + 1];
    }
    return ans;
  }
};
func distinctDifferenceArray(nums []int) []int {
  n := len(nums)
  suf := make([]int, n+1)
  s := map[int]bool{}
  for i := n - 1; i >= 0; i-- {
    s[nums[i]] = true
    suf[i] = len(s)
  }
  ans := make([]int, n)
  s = map[int]bool{}
  for i, x := range nums {
    s[x] = true
    ans[i] = len(s) - suf[i+1]
  }
  return ans
}
function distinctDifferenceArray(nums: number[]): number[] {
  const n = nums.length;
  const suf: number[] = Array(n + 1).fill(0);
  const s: Set<number> = new Set();
  for (let i = n - 1; i >= 0; --i) {
    s.add(nums[i]);
    suf[i] = s.size;
  }
  s.clear();
  const ans: number[] = Array(n).fill(0);
  for (let i = 0; i < n; ++i) {
    s.add(nums[i]);
    ans[i] = s.size - suf[i + 1];
  }
  return ans;
}
use std::collections::HashSet;

impl Solution {
  pub fn distinct_difference_array(nums: Vec<i32>) -> Vec<i32> {
    let n = nums.len();
    let mut suf = vec![0; n + 1];
    let mut s = HashSet::new();

    for i in (0..n).rev() {
      s.insert(nums[i]);
      suf[i] = s.len();
    }

    let mut ans = Vec::new();
    s.clear();
    for i in 0..n {
      s.insert(nums[i]);
      ans.push((s.len() - suf[i + 1]) as i32);
    }

    ans
  }
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文