- 内容提要
- 前言
- 作者简介
- 封面简介
- 第1章 理解高性能 Python
- 第2章 通过性能分析找到瓶颈
- 2.1 高效地分析性能
- 2.2 Julia 集合的介绍
- 2.3 计算完整的 Julia 集合
- 2.4 计时的简单方法——打印和修饰
- 2.5 用 UNIX 的 time 命令进行简单的计时
- 2.6 使用 cProfile 模块
- 2.7 用 runsnakerun 对 cProfile 的输出进行可视化
- 2.8 用 line_profiler 进行逐行分析
- 2.9 用 memory_profiler 诊断内存的用量
- 2.10 用 heapy 调查堆上的对象
- 2.11 用 dowser 实时画出变量的实例
- 2.12 用 dis 模块检查 CPython 字节码
- 2.13 在优化期间进行单元测试保持代码的正确性
- 2.14 确保性能分析成功的策略
- 2.15 小结
- 第3章 列表和元组
- 第4章 字典和集合
- 第5章 迭代器和生成器
- 第6章 矩阵和矢量计算
- 第7章 编译成 C
- 第8章 并发
- 第9章 multiprocessing 模块
- 第10章 集群和工作队列
- 第11章 使用更少的 RAM
- 第12章 现场教训
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
7.5 复习 Julia 集的例子
回到第2章我们剖析了Julia集产生器。这个代码使用整数和复数来生成输出图片。图片的计算是CPU密集型的。在代码中主要的开销就是有个计算输出列表的内循环,这是CPU密集型的本质。这个列表能被当作方形的像素阵列来画出,其中每个值代表了产生那个像素的开销。
内循环的代码显示在例7-1中。
例7-1 复习Julia函数的CPU密集型代码
def calculate_z_serial_purepython(maxiter, zs, cs): """Calculate output list using Julia update rule""" output = [0] * len(zs) for i in range(len(zs)): n = 0 z = zs[i] c = cs[i] while n < maxiter and abs(z) < 2: z = z * z + c n += 1 output[i] = n return output
在Ian的笔记本电脑上,原始的Julia集在1000*1000的格子中计算并且maxiter= 300,使用运行在CPython2.7中的纯粹Python实现,计算大概接近于11秒。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论