返回介绍

Best Time to Buy and Sell Stock IV

发布于 2025-02-22 13:01:33 字数 5978 浏览 0 评论 0 收藏 0

Source

Say you have an array for
which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit.
You may complete at most k transactions.

Example
Given prices = [4,4,6,1,1,4,2,5], and k = 2, return 6.

Note
You may not engage in multiple transactions at the same time
(i.e., you must sell the stock before you buy again).

Challenge
O(nk) time.

题解 1

卖股票系列中最难的一道,较易实现的方法为使用动态规划,动规的实现又分为大约 3 大类方法,这里先介绍一种最为朴素的方法,过不了大量数据,会 TLE .

最多允许 k 次交易,由于一次增加收益的交易至少需要两天,故当 k >= n/2 时,此题退化为卖股票的第二道题,即允许任意多次交易。当 k < n/2 时,使用动规来求解,动规的几个要素如下:

f[i][j] 代表第 i 天为止交易 k 次获得的最大收益,那么将问题分解为前 x 天交易 k-1 次,第 x+1 天至第 i 天交易一次两个子问题,于是动态方程如下:

f[i][j] = max(f[x][j - 1] + profit(x + 1, i))

简便起见,初始化二维矩阵为 0,下标尽可能从 1 开始,便于理解。

Python

class Solution:
  """
  @param k: an integer
  @param prices: a list of integer
  @return: an integer which is maximum profit
  """
  def maxProfit(self, k, prices):
    if prices is None or len(prices) <= 1 or k <= 0:
      return 0

    n = len(prices)
    # k >= prices.length / 2 ==> multiple transactions Stock II
    if k >= n / 2:
      profit_max = 0
      for i in xrange(1, n):
        diff = prices[i] - prices[i - 1]
        if diff > 0:
          profit_max += diff
      return profit_max

    f = [[0 for i in xrange(k + 1)] for j in xrange(n + 1)]
    for j in xrange(1, k + 1):
      for i in xrange(1, n + 1):
        for x in xrange(0, i + 1):
          f[i][j] = max(f[i][j], f[x][j - 1] + self.profit(prices, x + 1, i))

    return f[n][k]

  # calculate the profit of prices(l, u)
  def profit(self, prices, l, u):
    if l >= u:
      return 0
    valley = 2**31 - 1
    profit_max = 0
    for price in prices[l - 1:u]:
      profit_max = max(profit_max, price - valley)
      valley = min(valley, price)
    return profit_max

C++

class Solution {
public:
  /**
   * @param k: An integer
   * @param prices: Given an integer array
   * @return: Maximum profit
   */
  int maxProfit(int k, vector<int> &prices) {
    if (prices.size() <= 1 || k <= 0) return 0;

    int n = prices.size();
    // k >= prices.length / 2 ==> multiple transactions Stock II
    if (k >= n / 2) {
      int profit_max = 0;
      for (int i = 1; i < n; ++i) {
        int diff = prices[i] - prices[i - 1];
        if (diff > 0) {
          profit_max += diff;
        }
      }
      return profit_max;
    }

    vector<vector<int> > f = vector<vector<int> >(n + 1, vector<int>(k + 1, 0));
    for (int j = 1; j <= k; ++j) {
      for (int i = 1; i <= n; ++i) {
        for (int x = 0; x <= i; ++x) {
          f[i][j] = max(f[i][j], f[x][j - 1] + profit(prices, x + 1, i));
        }
      }
    }

    return f[n][k];
  }

private:
  int profit(vector<int> &prices, int l, int u) {
    if (l >= u) return 0;

    int valley = INT_MAX;
    int profit_max = 0;
    for (int i = l - 1; i < u; ++i) {
      profit_max = max(profit_max, prices[i] - valley);
      valley = min(valley, prices[i]);
    }

    return profit_max;
  }
};

Java

class Solution {
  /**
   * @param k: An integer
   * @param prices: Given an integer array
   * @return: Maximum profit
   */
  public int maxProfit(int k, int[] prices) {
    if (prices == null || prices.length <= 1 || k <= 0) return 0;

    int n = prices.length;
    if (k >= n / 2) {
      int profit_max = 0;
      for (int i = 1; i < n; i++) {
        if (prices[i] - prices[i - 1] > 0) {
          profit_max += prices[i] - prices[i - 1];
        }
      }
      return profit_max;
    }

    int[][] f = new int[n + 1][k + 1];
    for (int j = 1; j <= k; j++) {
      for (int i = 1; i <= n; i++) {
        for (int x = 0; x <= i; x++) {
          f[i][j] = Math.max(f[i][j], f[x][j - 1] + profit(prices, x + 1, i));
        }
      }
    }

    return f[n][k];
  }

  private int profit(int[] prices, int l, int u) {
    if (l >= u) return 0;

    int valley = Integer.MAX_VALUE;
    int profit_max = 0;
    for (int i = l - 1; i < u; i++) {
      profit_max = Math.max(profit_max, prices[i] - valley);
      valley = Math.min(valley, prices[i]);
    }
    return profit_max;
  }
};

源码分析

注意 Python 中的多维数组初始化方式,不可简单使用 [[0] * k] * n] , 具体原因是因为 Python 中的对象引用方式。可以优化的地方是 profit 方法及最内存循环。

复杂度分析

三重循环,时间复杂度近似为 O(n2⋅k)O(n^2 \cdot k)O(n2⋅k), 使用了 f 二维数组,空间复杂度为 O(n⋅k)O(n \cdot k)O(n⋅k).

Reference

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文