- 序言
- 云原生
- Kubernetes 架构
- Kubernetes 中的网络
- Pod 状态与生命周期管理
- 集群资源管理
- 控制器
- 服务发现
- 身份与权限控制
- 存储
- 集群扩展
- 资源调度
- 用户指南
- 资源对象配置
- 命令使用
- 集群安全性管理
- 访问 Kubernetes 集群
- 在 Kubernetes 中开发部署应用
- 最佳实践概览
- 在 CentOS 上部署 Kubernetes 集群
- 生产级的 Kubernetes 简化管理工具kubeadm
- 服务发现与负载均衡
- 运维管理
- 存储管理
- 集群与应用监控
- 分布式跟踪
- 服务编排管理
- 持续集成与发布
- 更新与升级
- 领域应用概览
- 微服务架构
- Service Mesh 服务网格
- 大数据
- Serverless架构
- 边缘计算
- 人工智能
- 开发指南
- CNCF
- 附录说明
大数据
Kubernetes community中已经有了一个Big data SIG,大家可以通过这个SIG了解kubernetes结合大数据的应用。
在Swarm、Mesos、kubernetes这三种流行的容器编排调度架构中,Mesos对于大数据应用支持是最好的,spark原生就是运行在mesos上的,当然也可以容器化运行在kubernetes上。当前在kubernetes上运行大数据应用主要是spark应用。
Spark on Kubernetes
Spark原生支持standalone、mesos和YARN的调度方式,当前kubernetes社区正在支持kubernetes的原生调度来运行spark - 。
当然您也可以在kubernetes直接部署spark on yarn或者spark standalone模式,仍然沿用已有的
Spark Standalone
使用spark standalone模式在kubernetes上运行,kubernetes不负责spark任务的调度。参考:Spark standalone on Kubernetes
这种模式中使用的spark本身负责任务调度,kubernetes只是作为一个spark的部署平台。
Spark on Yarn
使用StatefulSet和Headless serverless来实现,请参考 Spark on Yarn
这种模式中kubernetes依然不负责spark应用的调度,而只是将Yarn换了一个部署环境而已。
下面是架构图:
Spark on Kubernetes
Spark on kubernetes,使用kubernetes作为调度引擎,spark的任务直接调度到node节点上。参考:运行支持kubernetes原生调度的Spark程序。
调度方式总结
下图显示的是三种调度方式中单个kubernetes node节点上运行的spark相关容器的调度情况。
毫无疑问,使用kubernetes原生调度的spark任务才是最节省资源的。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论