- Introduction to Python
- Getting started with Python and the IPython notebook
- Functions are first class objects
- Data science is OSEMN
- Working with text
- Preprocessing text data
- Working with structured data
- Using SQLite3
- Using HDF5
- Using numpy
- Using Pandas
- Computational problems in statistics
- Computer numbers and mathematics
- Algorithmic complexity
- Linear Algebra and Linear Systems
- Linear Algebra and Matrix Decompositions
- Change of Basis
- Optimization and Non-linear Methods
- Practical Optimizatio Routines
- Finding roots
- Optimization Primer
- Using scipy.optimize
- Gradient deescent
- Newton’s method and variants
- Constrained optimization
- Curve fitting
- Finding paraemeters for ODE models
- Optimization of graph node placement
- Optimization of standard statistical models
- Fitting ODEs with the Levenberg–Marquardt algorithm
- 1D example
- 2D example
- Algorithms for Optimization and Root Finding for Multivariate Problems
- Expectation Maximizatio (EM) Algorithm
- Monte Carlo Methods
- Resampling methods
- Resampling
- Simulations
- Setting the random seed
- Sampling with and without replacement
- Calculation of Cook’s distance
- Permutation resampling
- Design of simulation experiments
- Example: Simulations to estimate power
- Check with R
- Estimating the CDF
- Estimating the PDF
- Kernel density estimation
- Multivariate kerndel density estimation
- Markov Chain Monte Carlo (MCMC)
- Using PyMC2
- Using PyMC3
- Using PyStan
- C Crash Course
- Code Optimization
- Using C code in Python
- Using functions from various compiled languages in Python
- Julia and Python
- Converting Python Code to C for speed
- Optimization bake-off
- Writing Parallel Code
- Massively parallel programming with GPUs
- Writing CUDA in C
- Distributed computing for Big Data
- Hadoop MapReduce on AWS EMR with mrjob
- Spark on a local mahcine using 4 nodes
- Modules and Packaging
- Tour of the Jupyter (IPython3) notebook
- Polyglot programming
- What you should know and learn more about
- Wrapping R libraries with Rpy
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
Basic concepts of database normalization
In which we convert a dataframe into a normalized database.
names = ['ann', 'bob', 'ann', 'bob', 'carl', 'delia', 'ann'] tests = ['wbc', 'wbc', 'rbc', 'rbc', 'wbc', 'rbc', 'platelets'] values1 = [10, 11.2, 300, 204, 9.8, 340, 125] values2 = [10.6, 13.2, 322, 214, 10.3, 343, 145] df = pd.DataFrame([names, tests, values1, values2]).T df.columns = ['names', 'tests', 'values1', 'values2'] df
names | tests | values1 | values2 | |
---|---|---|---|---|
0 | ann | wbc | 10 | 10.6 |
1 | bob | wbc | 11.2 | 13.2 |
2 | ann | rbc | 300 | 322 |
3 | bob | rbc | 204 | 214 |
4 | carl | wbc | 9.8 | 10.3 |
5 | delia | rbc | 340 | 343 |
6 | ann | platelets | 125 | 145 |
# names are put into their own table so there is no dubplication name_table = pd.DataFrame(df['names'].unique(), columns=['name']) name_table['name_id'] = name_table.index columns = ['name_id', 'name'] name_table[columns]
name_id | name | |
---|---|---|
0 | 0 | ann |
1 | 1 | bob |
2 | 2 | carl |
3 | 3 | delia |
# tests are put inot their own table so there is no duplication test_table = pd.DataFrame(df['tests'].unique(), columns=['test']) test_table['test_id'] = test_table.index columns = ['test_id', 'test'] test_table[columns]
test_id | test | |
---|---|---|
0 | 0 | wbc |
1 | 1 | rbc |
2 | 2 | platelets |
# the values1 and values2 correspond to visit 1 and 2, so # we create a visits table visit_table = pd.DataFrame([1,2], columns=['visit']) visit_table['visit_id'] = visit_table.index columns = ['visit_id', 'visit'] visit_table[columns]
visit_id | visit | |
---|---|---|
0 | 0 | 1 |
1 | 1 | 2 |
# finally, we link each value to a triple(name_id, test_id, visit_id) value_table = pd.DataFrame([ [0,0,0,10], [1,0,0,11.2], [0,1,0,300], [1,1,0,204], [2,0,0,9.8], [3,1,0,340], [0,2,0,125], [0,0,1,10.6], [1,0,1,13.2], [0,1,1,322], [1,1,1,214], [2,0,1,10.3], [3,1,1,343], [0,2,1,145] ], columns=['name_id', 'test_id', 'visit_id', 'value']) value_table
name_id | test_id | visit_id | value | |
---|---|---|---|---|
0 | 0 | 0 | 0 | 10.0 |
1 | 1 | 0 | 0 | 11.2 |
2 | 0 | 1 | 0 | 300.0 |
3 | 1 | 1 | 0 | 204.0 |
4 | 2 | 0 | 0 | 9.8 |
5 | 3 | 1 | 0 | 340.0 |
6 | 0 | 2 | 0 | 125.0 |
7 | 0 | 0 | 1 | 10.6 |
8 | 1 | 0 | 1 | 13.2 |
9 | 0 | 1 | 1 | 322.0 |
10 | 1 | 1 | 1 | 214.0 |
11 | 2 | 0 | 1 | 10.3 |
12 | 3 | 1 | 1 | 343.0 |
13 | 0 | 2 | 1 | 145.0 |
At the end of the normalizaiton, we have gone from 1 dataframe with multiple redundancies to 4 tables with unique entries in each row. This organization helps maintain data integrity and is necesssary for effficeincy as the number of test values grows, possibly into millions of rows. As we have seen, we can use SQL queries to recreate the origianl dataformat if that is more convenient for analysis.
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论