返回介绍

数学基础

统计学习

深度学习

工具

Scala

六、历史小记

发布于 2023-07-17 23:38:25 字数 709 浏览 0 评论 0 收藏 0

  1. 现代前馈网络的核心思想自20世纪80年代以来没有发生重大变化。

    近年来神经网络性能的大部分改变可归因于两个因素:更大的数据集、更大的网络(由于硬件的强大和软件设施的发展)。

    算法上的部分改变也显著改善了神经网络的性能:

    • 用交叉熵代替均方误差作为损失函数。

      均方误差在20世纪80年代和90年代流行,后来逐渐被交叉熵代替。交叉熵大大提高了sigmoid输出单元和softmax输出单元的模型的性能。

    • 使用分段线性隐单元(如修正线性单元)来代替sigmoid隐单元。

  2. 修正线性单元描述了生物神经元的这些特性:

    • 对于某些输入,生物神经元是完全不活跃的。
    • 对于某些输入,生物神经元的输出和输入成比例。
    • 大多数时间,生物神经元位于不活跃的状态。
  3. 2006-2012年,人们普遍认为:前馈神经网络如果没有其他模型的辅助,则表现不佳。现在已经知道:当具备合适的资源和工程实践,前馈网络表现的非常好。

  4. 前馈网络中基于梯度的学习被用作研究概率模型的工具,它也可以应用于许多其他机器学习任务。

  5. 在 2006年,业内使用无监督学习来支持监督学习;目前更常见的是使用监督学习来支持无监督学习。

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文