数学基础
- 线性代数
- 概率论与随机过程
- 数值计算
- 蒙特卡洛方法与 MCMC 采样
- 机器学习方法概论
统计学习
深度学习
- 深度学习简介
- 深度前馈网络
- 反向传播算法
- 正则化
- 深度学习中的最优化问题
- 卷积神经网络
- CNN:图像分类
- 循环神经网络 RNN
- Transformer
- 一、Transformer [2017]
- 二、Universal Transformer [2018]
- 三、Transformer-XL [2019]
- 四、GPT1 [2018]
- 五、GPT2 [2019]
- 六、GPT3 [2020]
- 七、OPT [2022]
- 八、BERT [2018]
- 九、XLNet [2019]
- 十、RoBERTa [2019]
- 十一、ERNIE 1.0 [2019]
- 十二、ERNIE 2.0 [2019]
- 十三、ERNIE 3.0 [2021]
- 十四、ERNIE-Huawei [2019]
- 十五、MT-DNN [2019]
- 十六、BART [2019]
- 十七、mBART [2020]
- 十八、SpanBERT [2019]
- 十九、ALBERT [2019]
- 二十、UniLM [2019]
- 二十一、MASS [2019]
- 二十二、MacBERT [2019]
- 二十三、Fine-Tuning Language Models from Human Preferences [2019]
- 二十四 Learning to summarize from human feedback [2020]
- 二十五、InstructGPT [2022]
- 二十六、T5 [2020]
- 二十七、mT5 [2020]
- 二十八、ExT5 [2021]
- 二十九、Muppet [2021]
- 三十、Self-Attention with Relative Position Representations [2018]
- 三十一、USE [2018]
- 三十二、Sentence-BERT [2019]
- 三十三、SimCSE [2021]
- 三十四、BERT-Flow [2020]
- 三十五、BERT-Whitening [2021]
- 三十六、Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings [2019]
- 三十七、CERT [2020]
- 三十八、DeCLUTR [2020]
- 三十九、CLEAR [2020]
- 四十、ConSERT [2021]
- 四十一、Sentence-T5 [2021]
- 四十二、ULMFiT [2018]
- 四十三、Scaling Laws for Neural Language Models [2020]
- 四十四、Chinchilla [2022]
- 四十七、GLM-130B [2022]
- 四十八、GPT-NeoX-20B [2022]
- 四十九、Bloom [2022]
- 五十、PaLM [2022] (粗读)
- 五十一、PaLM2 [2023](粗读)
- 五十二、Self-Instruct [2022]
- 句子向量
- 词向量
- 传统CTR 预估模型
- CTR 预估模型
- 一、DSSM [2013]
- 二、FNN [2016]
- 三、PNN [2016]
- 四、DeepCrossing [2016]
- 五、Wide 和 Deep [2016]
- 六、DCN [2017]
- 七、DeepFM [2017]
- 八、NFM [2017]
- 九、AFM [2017]
- 十、xDeepFM [2018]
- 十一、ESMM [2018]
- 十二、DIN [2017]
- 十三、DIEN [2019]
- 十四、DSIN [2019]
- 十五、DICM [2017]
- 十六、DeepMCP [2019]
- 十七、MIMN [2019]
- 十八、DMR [2020]
- 十九、MiNet [2020]
- 二十、DSTN [2019]
- 二十一、BST [2019]
- 二十二、SIM [2020]
- 二十三、ESM2 [2019]
- 二十四、MV-DNN [2015]
- 二十五、CAN [2020]
- 二十六、AutoInt [2018]
- 二十七、Fi-GNN [2019]
- 二十八、FwFM [2018]
- 二十九、FM2 [2021]
- 三十、FiBiNET [2019]
- 三十一、AutoFIS [2020]
- 三十三、AFN [2020]
- 三十四、FGCNN [2019]
- 三十五、AutoCross [2019]
- 三十六、InterHAt [2020]
- 三十七、xDeepInt [2023]
- 三十九、AutoDis [2021]
- 四十、MDE [2020]
- 四十一、NIS [2020]
- 四十二、AutoEmb [2020]
- 四十三、AutoDim [2021]
- 四十四、PEP [2021]
- 四十五、DeepLight [2021]
- 图的表达
- 一、DeepWalk [2014]
- 二、LINE [2015]
- 三、GraRep [2015]
- 四、TADW [2015]
- 五、DNGR [2016]
- 六、Node2Vec [2016]
- 七、WALKLETS [2016]
- 八、SDNE [2016]
- 九、CANE [2017]
- 十、EOE [2017]
- 十一、metapath2vec [2017]
- 十二、GraphGAN [2018]
- 十三、struc2vec [2017]
- 十四、GraphWave [2018]
- 十五、NetMF [2017]
- 十六、NetSMF [2019]
- 十七、PTE [2015]
- 十八、HNE [2015]
- 十九、AANE [2017]
- 二十、LANE [2017]
- 二十一、MVE [2017]
- 二十二、PMNE [2017]
- 二十三、ANRL [2018]
- 二十四、DANE [2018]
- 二十五、HERec [2018]
- 二十六、GATNE [2019]
- 二十七、MNE [2018]
- 二十八、MVN2VEC [2018]
- 二十九、SNE [2018]
- 三十、ProNE [2019]
- Graph Embedding 综述
- 图神经网络
- 一、GNN [2009]
- 二、Spectral Networks 和 Deep Locally Connected Networks [2013]
- 三、Fast Localized Spectral Filtering On Graph [2016]
- 四、GCN [2016]
- 五、神经图指纹 [2015]
- 六、GGS-NN [2016]
- 七、PATCHY-SAN [2016]
- 八、GraphSAGE [2017]
- 九、GAT [2017]
- 十、R-GCN [2017]
- 十一、 AGCN [2018]
- 十二、FastGCN [2018]
- 十三、PinSage [2018]
- 十四、GCMC [2017]
- 十五、JK-Net [2018]
- 十六、PPNP [2018]
- 十七、VRGCN [2017]
- 十八、ClusterGCN [2019]
- 十九、LDS-GNN [2019]
- 二十、DIAL-GNN [2019]
- 二十一、HAN [2019]
- 二十二、HetGNN [2019]
- 二十三、HGT [2020]
- 二十四、GPT-GNN [2020]
- 二十五、Geom-GCN [2020]
- 二十六、Graph Network [2018]
- 二十七、GIN [2019]
- 二十八、MPNN [2017]
- 二十九、UniMP [2020]
- 三十、Correct and Smooth [2020]
- 三十一、LGCN [2018]
- 三十二、DGCNN [2018]
- 三十三、AS-GCN
- 三十四、DGI [2018]
- 三十五、DIFFPOLL [2018]
- 三十六、DCNN [2016]
- 三十七、IN [2016]
- 图神经网络 2
- 图神经网络 3
- 推荐算法(传统方法)
- 一、Tapestry [1992]
- 二、GroupLens [1994]
- 三、ItemBased CF [2001]
- 四、Amazon I-2-I CF [2003]
- 五、Slope One Rating-Based CF [2005]
- 六、Bipartite Network Projection [2007]
- 七、Implicit Feedback CF [2008]
- 八、PMF [2008]
- 九、SVD++ [2008]
- 十、MMMF 扩展 [2008]
- 十一、OCCF [2008]
- 十二、BPR [2009]
- 十三、MF for RS [2009]
- 十四、 Netflix BellKor Solution [2009]
- 推荐算法(神经网络方法 1)
- 一、MIND [2019](用于召回)
- 二、DNN For YouTube [2016]
- 三、Recommending What Video to Watch Next [2019]
- 四、ESAM [2020]
- 五、Facebook Embedding Based Retrieval [2020](用于检索)
- 六、Airbnb Search Ranking [2018]
- 七、MOBIUS [2019](用于召回)
- 八、TDM [2018](用于检索)
- 九、DR [2020](用于检索)
- 十、JTM [2019](用于检索)
- 十一、Pinterest Recommender System [2017]
- 十二、DLRM [2019]
- 十三、Applying Deep Learning To Airbnb Search [2018]
- 十四、Improving Deep Learning For Airbnb Search [2020]
- 十五、HOP-Rec [2018]
- 十六、NCF [2017]
- 十七、NGCF [2019]
- 十八、LightGCN [2020]
- 十九、Sampling-Bias-Corrected Neural Modeling [2019](检索)
- 二十、EGES [2018](Matching 阶段)
- 二十一、SDM [2019](Matching 阶段)
- 二十二、COLD [2020 ] (Pre-Ranking 模型)
- 二十三、ComiRec [2020](https://www.wenjiangs.com/doc/0b4e1736-ac78)
- 二十四、EdgeRec [2020]
- 二十五、DPSR [2020](检索)
- 二十六、PDN [2021](mathcing)
- 二十七、时空周期兴趣学习网络ST-PIL [2021]
- 推荐算法之序列推荐
- 一、FPMC [2010]
- 二、GRU4Rec [2015]
- 三、HRM [2015]
- 四、DREAM [2016]
- 五、Improved GRU4Rec [2016]
- 六、NARM [2017]
- 七、HRNN [2017]
- 八、RRN [2017]
- 九、Caser [2018]
- 十、p-RNN [2016]
- 十一、GRU4Rec Top-k Gains [2018]
- 十二、SASRec [2018]
- 十三、RUM [2018]
- 十四、SHAN [2018]
- 十五、Phased LSTM [2016]
- 十六、Time-LSTM [2017]
- 十七、STAMP [2018]
- 十八、Latent Cross [2018]
- 十九、CSRM [2019]
- 二十、SR-GNN [2019]
- 二十一、GC-SAN [2019]
- 二十二、BERT4Rec [2019]
- 二十三、MCPRN [2019]
- 二十四、RepeatNet [2019]
- 二十五、LINet(2019)
- 二十六、NextItNet [2019]
- 二十七、GCE-GNN [2020]
- 二十八、LESSR [2020]
- 二十九、HyperRec [2020]
- 三十、DHCN [2021]
- 三十一、TiSASRec [2020]
- 推荐算法(综述)
- 多任务学习
- 系统架构
- 实践方法论
- 深度强化学习 1
- 自动代码生成
工具
- CRF
- lightgbm
- xgboost
- scikit-learn
- spark
- numpy
- matplotlib
- pandas
- huggingface_transformer
- 一、Tokenizer
- 二、Datasets
- 三、Model
- 四、Trainer
- 五、Evaluator
- 六、Pipeline
- 七、Accelerate
- 八、Autoclass
- 九、应用
- 十、Gradio
Scala
- 环境搭建
- 基础知识
- 函数
- 类
- 样例类和模式匹配
- 测试和注解
- 集合 collection(一)
- 集合collection(二)
- 集成 Java
- 并发
六、先验分布与后验分布
在贝叶斯学派中,
先验分布+数据(似然)= 后验分布
。例如:假设需要识别一大箱苹果中的好苹果、坏苹果的概率。
根据你对苹果好、坏的认知,给出先验分布为:50个好苹果和50个坏苹果。
现在你拿出10个苹果,发现有:8个好苹果,2个坏苹果。
根据数据,你得到后验分布为:58个好苹果,52个坏苹果
再拿出10个苹果,发现有:9个好苹果,1个坏苹果。
根据数据,你得到后验分布为:67个好苹果,53个坏苹果
这样不断重复下去,不断更新后验分布。当一箱苹果清点完毕,则得到了最终的后验分布。
在这里:
- 如果不使用先验分布,仅仅清点这箱苹果中的好坏,则得到的分布只能代表这一箱苹果。
- 采用了先验分布之后得到的分布,可以认为是所有箱子里的苹果的分布。
- 当采用先验分布时:给出的好、坏苹果的个数(也就是频数)越大,则先验分布越占主导地位。
假设好苹果的概率为 $ MathJax-Element-462 $ ,则抽取 $ MathJax-Element-463 $ 个苹果中,好苹果个数为 $ MathJax-Element-460 $ 个的概率为一个二项分布:
$ Binom(k\mid p;N)=C_N^kp^k(1-p)^{N-k} $其中 $ MathJax-Element-447 $ 为组合数。
现在的问题是:好苹果的概率 $ MathJax-Element-462 $ 不再固定,而是服从一个分布。
假设好苹果的概率 $ MathJax-Element-462 $ 的先验分布为贝塔分布: $ MathJax-Element-450 $ 。
则后验概率为:
$ P(p\mid k; N,\alpha,\beta)=\frac{P(k\mid p; N)\times P(p; \alpha,\beta)}{P(k; N,\alpha,\beta)} \\ \propto P(k\mid p; N)\times P(p; \alpha,\beta)=C_N^kp^k(1-p)^{N-k}\times \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}p^{\alpha-1}(1-p)^{\beta-1}\\ \propto p^{k+\alpha-1}(1-p)^{N-k+\beta-1} $归一化之后,得到后验概率为:
$ P(p\mid k;N,\alpha,\beta)=\frac{\Gamma(\alpha+\beta+N)}{\Gamma(\alpha+k)\Gamma(\beta+N-k)}p^{k+\alpha-1}(1-p)^{N-k+\beta-1} $好苹果概率 $ MathJax-Element-462 $ 的先验分布的期望为: $ MathJax-Element-452 $ 。好苹果概率 $ MathJax-Element-462 $ 的后验分布的期望为: $ MathJax-Element-454 $ 。
根据上述例子所述:
- 好苹果的先验概率的期望为 $ MathJax-Element-455 $
- 进行第一轮数据校验之后,好苹果的后验概率的期望为 $ MathJax-Element-456 $
如果将 $ MathJax-Element-457 $ 视为先验的好苹果数量, $ MathJax-Element-458 $ 视为先验的坏苹果数量, $ MathJax-Element-463 $ 表示箱子中苹果的数量, $ MathJax-Element-460 $ 表示箱子中的好苹果数量(相应的, $ MathJax-Element-461 $ 就是箱子中坏苹果的数量)。则:好苹果的先验概率分布的期望、后验概率分布的期望符合人们的生活经验。
这里使用先验分布和后验分布的期望,因为 $ MathJax-Element-462 $ 是一个随机变量。若想通过一个数值来刻画好苹果的可能性,则用期望较好。
更一般的,如果苹果不仅仅分为好、坏两种,而是分作
$ Mult(m_1,m_2,\cdots,m_K;\vec\mu,N)=\frac{N!}{m_1!m_2!\cdots m_K!}\prod_{k=1}^{K}\mu_k^{m_k} $尺寸1、尺寸2、...尺寸K
等。则 $ MathJax-Element-463 $ 个苹果中,有 $ MathJax-Element-464 $ 个尺寸1的苹果、 $ MathJax-Element-465 $ 个尺寸2的苹果.... $ MathJax-Element-466 $ 个尺寸 $ MathJax-Element-483 $ 的苹果的概率服从多项式分布:其中苹果为尺寸1的概率为 $ MathJax-Element-468 $ , 尺寸2的概率为 $ MathJax-Element-469 $ ,... 尺寸 $ MathJax-Element-483 $ 的概率为 $ MathJax-Element-471 $ , $ MathJax-Element-472 $
假设苹果尺寸的先验概率分布为狄利克雷分布: $ MathJax-Element-473 $ 。
苹果尺寸的先验概率分布的期望为: $ MathJax-Element-474 $ 。
则苹果尺寸的后验概率分布也为狄里克雷分布: $ MathJax-Element-475 $ 。
苹果尺寸的后验概率分布的期望为: $ MathJax-Element-476 $ 。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论