文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
11.2 选择排序
选择排序(selection sort)的工作原理非常简单:开启一个循环,每轮从未排序区间选择最小的元素,将其放到已排序区间的末尾。
设数组的长度为 \(n\) ,选择排序的算法流程如图 11-2 所示。
- 初始状态下,所有元素未排序,即未排序(索引)区间为 \([0, n-1]\) 。
- 选取区间 \([0, n-1]\) 中的最小元素,将其与索引 \(0\) 处的元素交换。完成后,数组前 1 个元素已排序。
- 选取区间 \([1, n-1]\) 中的最小元素,将其与索引 \(1\) 处的元素交换。完成后,数组前 2 个元素已排序。
- 以此类推。经过 \(n - 1\) 轮选择与交换后,数组前 \(n - 1\) 个元素已排序。
- 仅剩的一个元素必定是最大元素,无须排序,因此数组排序完成。
图 11-2 选择排序步骤
在代码中,我们用 \(k\) 来记录未排序区间内的最小元素:
selection_sort.pydef selection_sort(nums: list[int]):
"""选择排序"""
n = len(nums)
# 外循环:未排序区间为 [i, n-1]
for i in range(n - 1):
# 内循环:找到未排序区间内的最小元素
k = i
for j in range(i + 1, n):
if nums[j] < nums[k]:
k = j # 记录最小元素的索引
# 将该最小元素与未排序区间的首个元素交换
nums[i], nums[k] = nums[k], nums[i]
selection_sort.cpp/* 选择排序 */
void selectionSort(vector<int> &nums) {
int n = nums.size();
// 外循环:未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // 记录最小元素的索引
}
// 将该最小元素与未排序区间的首个元素交换
swap(nums[i], nums[k]);
}
}
selection_sort.java/* 选择排序 */
void selectionSort(int[] nums) {
int n = nums.length;
// 外循环:未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // 记录最小元素的索引
}
// 将该最小元素与未排序区间的首个元素交换
int temp = nums[i];
nums[i] = nums[k];
nums[k] = temp;
}
}
selection_sort.cs/* 选择排序 */
void SelectionSort(int[] nums) {
int n = nums.Length;
// 外循环:未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // 记录最小元素的索引
}
// 将该最小元素与未排序区间的首个元素交换
(nums[k], nums[i]) = (nums[i], nums[k]);
}
}
selection_sort.go/* 选择排序 */
func selectionSort(nums []int) {
n := len(nums)
// 外循环:未排序区间为 [i, n-1]
for i := 0; i < n-1; i++ {
// 内循环:找到未排序区间内的最小元素
k := i
for j := i + 1; j < n; j++ {
if nums[j] < nums[k] {
// 记录最小元素的索引
k = j
}
}
// 将该最小元素与未排序区间的首个元素交换
nums[i], nums[k] = nums[k], nums[i]
}
}
selection_sort.swift/* 选择排序 */
func selectionSort(nums: inout [Int]) {
// 外循环:未排序区间为 [i, n-1]
for i in nums.indices.dropLast() {
// 内循环:找到未排序区间内的最小元素
var k = i
for j in nums.indices.dropFirst(i + 1) {
if nums[j] < nums[k] {
k = j // 记录最小元素的索引
}
}
// 将该最小元素与未排序区间的首个元素交换
nums.swapAt(i, k)
}
}
selection_sort.js/* 选择排序 */
function selectionSort(nums) {
let n = nums.length;
// 外循环:未排序区间为 [i, n-1]
for (let i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
let k = i;
for (let j = i + 1; j < n; j++) {
if (nums[j] < nums[k]) {
k = j; // 记录最小元素的索引
}
}
// 将该最小元素与未排序区间的首个元素交换
[nums[i], nums[k]] = [nums[k], nums[i]];
}
}
selection_sort.ts/* 选择排序 */
function selectionSort(nums: number[]): void {
let n = nums.length;
// 外循环:未排序区间为 [i, n-1]
for (let i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
let k = i;
for (let j = i + 1; j < n; j++) {
if (nums[j] < nums[k]) {
k = j; // 记录最小元素的索引
}
}
// 将该最小元素与未排序区间的首个元素交换
[nums[i], nums[k]] = [nums[k], nums[i]];
}
}
selection_sort.dart/* 选择排序 */
void selectionSort(List<int> nums) {
int n = nums.length;
// 外循环:未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k]) k = j; // 记录最小元素的索引
}
// 将该最小元素与未排序区间的首个元素交换
int temp = nums[i];
nums[i] = nums[k];
nums[k] = temp;
}
}
selection_sort.rs/* 选择排序 */
fn selection_sort(nums: &mut [i32]) {
if nums.is_empty() {
return;
}
let n = nums.len();
// 外循环:未排序区间为 [i, n-1]
for i in 0..n - 1 {
// 内循环:找到未排序区间内的最小元素
let mut k = i;
for j in i + 1..n {
if nums[j] < nums[k] {
k = j; // 记录最小元素的索引
}
}
// 将该最小元素与未排序区间的首个元素交换
nums.swap(i, k);
}
}
selection_sort.c/* 选择排序 */
void selectionSort(int nums[], int n) {
// 外循环:未排序区间为 [i, n-1]
for (int i = 0; i < n - 1; i++) {
// 内循环:找到未排序区间内的最小元素
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // 记录最小元素的索引
}
// 将该最小元素与未排序区间的首个元素交换
int temp = nums[i];
nums[i] = nums[k];
nums[k] = temp;
}
}
selection_sort.kt/* 选择排序 */
fun selectionSort(nums: IntArray) {
val n = nums.size
// 外循环:未排序区间为 [i, n-1]
for (i in 0..<n - 1) {
var k = i
// 内循环:找到未排序区间内的最小元素
for (j in i + 1..<n) {
if (nums[j] < nums[k])
k = j // 记录最小元素的索引
}
// 将该最小元素与未排序区间的首个元素交换
val temp = nums[i]
nums[i] = nums[k]
nums[k] = temp
}
}
selection_sort.rb### 选择排序 ###
def selection_sort(nums)
n = nums.length
# 外循环:未排序区间为 [i, n-1]
for i in 0...(n - 1)
# 内循环:找到未排序区间内的最小元素
k = i
for j in (i + 1)...n
if nums[j] < nums[k]
k = j # 记录最小元素的索引
end
end
# 将该最小元素与未排序区间的首个元素交换
nums[i], nums[k] = nums[k], nums[i]
end
end
selection_sort.zig[class]{}-[func]{selectionSort}
11.2.1 算法特性
- 时间复杂度为 \(O(n^2)\)、非自适应排序:外循环共 \(n - 1\) 轮,第一轮的未排序区间长度为 \(n\) ,最后一轮的未排序区间长度为 \(2\) ,即各轮外循环分别包含 \(n\)、\(n - 1\)、\(\dots\)、\(3\)、\(2\) 轮内循环,求和为 \(\frac{(n - 1)(n + 2)}{2}\) 。
- 空间复杂度为 \(O(1)\)、原地排序:指针 \(i\) 和 \(j\) 使用常数大小的额外空间。
- 非稳定排序:如图 11-3 所示,元素
nums[i]
有可能被交换至与其相等的元素的右边,导致两者的相对顺序发生改变。
图 11-3 选择排序非稳定示例
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论