源码分析
用的 go 版本是 1.12.7。
从发起一个网络请求开始跟。
res, err := client.Do(req)
func (c *Client) Do(req *Request) (*Response, error) {
return c.do(req)
}
func (c *Client) do(req *Request) {
// ...
if resp, didTimeout, err = c.send(req, deadline); err != nil {
// ...
}
// ...
}
func send(ireq *Request, rt RoundTripper, deadline time.Time) {
// ...
resp, err = rt.RoundTrip(req)
// ...
}
// 从这里进入 RoundTrip 逻辑
/src/net/http/roundtrip.go: 16
func (t *Transport) RoundTrip(req *Request) (*Response, error) {
return t.roundTrip(req)
}
func (t *Transport) roundTrip(req *Request) (*Response, error) {
// 尝试去获取一个空闲连接,用于发起 http 连接
pconn, err := t.getConn(treq, cm)
// ...
}
// 重点关注这个函数,返回是一个长连接
func (t *Transport) getConn(treq *transportRequest, cm connectMethod) (*persistConn, error) {
// 省略了大量逻辑,只关注下面两点
// 有空闲连接就返回
pc := <-t.getIdleConnCh(cm)
// 没有创建连接
pc, err := t.dialConn(ctx, cm)
}
这里上面很多代码,其实只是为了展示这部分代码是怎么跟踪下来的,方便大家去看源码的时候去跟一下。
最后一个上面的代码里有个 getConn
方法。在发起网络请求的时候,会先取一个网络连接,取连接有两个来源。
- 如果有空闲连接,就拿空闲连接
// /src/net/http/tansport.go:810
func (t *Transport) getIdleConnCh(cm connectMethod) chan *persistConn {
// 返回放空闲连接的 chan
ch, ok := t.idleConnCh[key]
// ...
return ch
}
- 没有空闲连接,就创建长连接。
// /src/net/http/tansport.go:1357
func (t *Transport) dialConn() {
//...
conn, err := t.dial(ctx, "tcp", cm.addr())
// ...
go pconn.readLoop()
go pconn.writeLoop()
// ...
}
当第一次发起一个 http 请求时,这时候肯定没有空闲连接,会建立一个新连接。同时会创建一个读 goroutine 和一个写 goroutine。
读写协程
注意上面代码里的 t.dial(ctx, "tcp", cm.addr())
,如果像文章开头那样设置了 http.Transport
的
Dial: func(netw, addr string) (net.Conn, error) {
conn, err := net.DialTimeout(netw, addr, time.Second*2) //设置建立连接超时
if err != nil {
return nil, err
}
err = conn.SetDeadline(time.Now().Add(time.Second * 3)) //设置发送接受数据超时
if err != nil {
return nil, err
}
return conn, nil
},
那么这里就会在下面的 dial 里被执行到
func (t *Transport) dial(ctx context.Context, network, addr string) (net.Conn, error) {
// ...
c, err := t.Dial(network, addr)
// ...
}
这里面调用的设置超时,会执行到
// /src/net/net.go
func (c *conn) SetDeadline(t time.Time) error {
//...
c.fd.SetDeadline(t)
//...
}
//...
func setDeadlineImpl(fd *FD, t time.Time, mode int) error {
// ...
runtime_pollSetDeadline(fd.pd.runtimeCtx, d, mode)
return nil
}
//go:linkname poll_runtime_pollSetDeadline internal/poll.runtime_pollSetDeadline
func poll_runtime_pollSetDeadline(pd *pollDesc, d int64, mode int) {
// ...
// 设置一个定时器事件
rtf = netpollDeadline
// 并将事件注册到定时器里
modtimer(&pd.rt, pd.rd, 0, rtf, pd, pd.rseq)
}
上面的源码,简单来说就是,当第一次调用请求的,会建立个连接,这时候还会注册一个定时器事件,假设时间设了 3s,那么这个事件会在 3s 后发生,然后执行注册事件的逻辑。而这个注册事件就是 netpollDeadline
。注意这个 netpollDeadline
,待会会提到。
读写协程定时器事件
设置了超时事件,且超时事件是 3s 后之后,发生。再次期间正常收发数据。一切如常。
直到 3s 过后,这时候看读 goroutine,会等待网络数据返回。
// /src/net/http/tansport.go:1642
func (pc *persistConn) readLoop() {
//...
for alive {
_, err := pc.br.Peek(1) // 阻塞读取服务端返回的数据
//...
}
然后就是一直跟代码。
src/bufio/bufio.go: 129
func (b *Reader) Peek(n int) ([]byte, error) {
// ...
b.fill()
// ...
}
func (b *Reader) fill() {
// ...
n, err := b.rd.Read(b.buf[b.w:])
// ...
}
/src/net/http/transport.go: 1517
func (pc *persistConn) Read(p []byte) (n int, err error) {
// ...
n, err = pc.conn.Read(p)
// ...
}
// /src/net/net.go: 173
func (c *conn) Read(b []byte) (int, error) {
// ...
n, err := c.fd.Read(b)
// ...
}
func (fd *netFD) Read(p []byte) (n int, err error) {
n, err = fd.pfd.Read(p)
// ...
}
/src/internal/poll/fd_unix.go:
func (fd *FD) Read(p []byte) (int, error) {
//...
if err = fd.pd.waitRead(fd.isFile); err == nil {
continue
}
// ...
}
func (pd *pollDesc) waitRead(isFile bool) error {
return pd.wait('r', isFile)
}
func (pd *pollDesc) wait(mode int, isFile bool) error {
// ...
res := runtime_pollWait(pd.runtimeCtx, mode)
return convertErr(res, isFile)
}
直到跟到 runtime_pollWait
,这个可以简单认为是等待服务端数据返回。
//go:linkname poll_runtime_pollWait internal/poll.runtime_pollWait
func poll_runtime_pollWait(pd *pollDesc, mode int) int {
// 1.如果网络正常返回数据就跳出
for !netpollblock(pd, int32(mode), false) {
// 2.如果有出错情况也跳出
err = netpollcheckerr(pd, int32(mode))
if err != 0 {
return err
}
}
return 0
}
整条链路跟下来,就是会一直等待数据,等待的结果只有两个
- 有可以读的数据
- 出现报错
这里面的报错,又有那么两种
- 连接关闭
- 超时
func netpollcheckerr(pd *pollDesc, mode int32) int {
if pd.closing {
return 1 // errClosing
}
if (mode == 'r' && pd.rd < 0) || (mode == 'w' && pd.wd < 0) {
return 2 // errTimeout
}
return 0
}
其中提到的超时,就是指这里面返回的 数字 2
,会通过下面的函数,转化为 ErrTimeout
, 而 ErrTimeout.Error()
其实就是 i/o timeout。
func convertErr(res int, isFile bool) error {
switch res {
case 0:
return nil
case 1:
return errClosing(isFile)
case 2:
return ErrTimeout // ErrTimeout.Error() 就是 "i/o timeout"
}
println("unreachable: ", res)
panic("unreachable")
}
那么问题来了。上面返回的超时错误,也就是返回 2 的时候的条件是怎么满足的?
if (mode == 'r' && pd.rd < 0) || (mode == 'w' && pd.wd < 0) {
return 2 // errTimeout
}
还记得刚刚提到的 netpollDeadline 吗?
这里面放了定时器 3s 到点时执行的逻辑。
func timerproc(tb *timersBucket) {
// 计时器到设定时间点了,触发之前注册函数
f(arg, seq) // 之前注册的是 netpollDeadline
}
func netpollDeadline(arg interface{}, seq uintptr) {
netpolldeadlineimpl(arg.(*pollDesc), seq, true, true)
}
/src/runtime/netpoll.go: 428
func netpolldeadlineimpl(pd *pollDesc, seq uintptr, read, write bool) {
//...
if read {
pd.rd = -1
rg = netpollunblock(pd, 'r', false)
}
//...
}
这里会设置 pd.rd=-1
,是指 poller descriptor.read deadline
,含义网络轮询器文件描述符的读超时时间, 在 linux 里万物皆文件,这里的文件其实是指这次网络通讯中使用到的 socket。
这时候再回去看发生超时的条件就是 if (mode == 'r' && pd.rd < 0)
。
至此。代码里就收到了 io timeout 的报错。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论