设置开发和测试集
- 开发集和测试集的定义
- 开发集和测试集应该服从同一分布
- 开发集和测试集应该有多大?
- 使用单值评估指标进行优化
- 优化指标和满意度指标
- 通过开发集和度量指标加速迭代
- 何时修改开发集、测试集和指标
- 小结:建立开发集和测试集
基本误差分析
- 快速构建并迭代你的第一个系统
- 误差分析:根据开发集样本评估想法
- 在误差分析时并行评估多个想法
- 清洗误标注的开发集和测试集样本
- 将大型开发集拆分为两个子集,专注其一
- Eyeball 和 Blackbox 开发集该设置多大?
- 小结:基础误差分析
偏差和方差
学习曲线
与人类水平的表现相比
不同发行版的培训和测试
调试推理算法
端到端学习
按零件进行误差分析
总结
文章来源于网络收集而来,版权归原创者所有,如有侵权请及时联系!
偏差和方差举例
思考一下,我们的“猫分类”任务目标:一个“理想的”分类器(比如人类)在这个任务中能够取得近乎完美的表现。
假设你的算法表现如下:
- 训练错误率 = 1%
- 开发错误率 = 11%
这其中存在什么问题呢?根据前一章的定义,我们估计偏差为 1%,方差为 10%(=11%-1%)。因此,它有一个很高的方差(high variance)。虽然分类器的训练误差非常低,但是并没有成功泛化到开发集上。这也被叫做过拟合(overfitting)。
接下来,考虑如下情况:
- 训练错误率 = 15%
- 开发错误率 = 16%
我们估计偏差为 15%,方差为 1%。该分类器的错误率为 15%,没有很好地拟合训练集,但它在开发集上的误差不比在训练集上的误差高多少。因此,该分类器具有较高的偏差(high bias),而方差较低。我们称该算法是欠拟合(underfitting)的。
下面,考虑如下情况:
- 训练错误率 = 15%
- 开发错误率 = 30%
我们估计偏差为 15%,方差为 15%。该分类器有高偏差和高方差(high bias and high variance):它在训练集上表现得很差,因此有较高的偏差,而它在开发集上表现更差,因此方差同样较高。由于该分类器同时过拟合和欠拟合,过拟合/欠拟合术语很难准确应用于此。
最后,考虑如下情况:
- 训练错误率 = 0.5%
- 开发错误率 = 1%
该分类器效果很好,它具有低偏差和低方差。恭喜获得这么好的表现!
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论