- 一个 Python 的数据分析库
- 关于 Pandas
- 获取 Pandas
- v0.25.0 版本特性(2019年7月18日)
- 安装
- 快速入门
- Pandas 用户指南目录
- IO工具(文本,CSV,HDF5,…)
- 索引和数据选择器
- 多层级索引和高级索引
- Merge, join, and concatenate
- Reshaping and pivot tables
- Pandas 处理文本字符串
- Working with missing data
- Categorical data
- Nullable 整型数据类型
- Visualization
- Computational tools
- Group By: split-apply-combine
- 时间序列与日期用法
- 时间差
- Styling
- Options and settings
- Enhancing performance
- Sparse data structures
- Frequently Asked Questions (FAQ)
- 烹饪指南
- Pandas 生态圈
- API 参考手册
- 开发者文档
- 发布日志
与其他工具比较
与R/R库的比较
由于 pandas
旨在为人们提供可以替代Ropen in new window的大量数据操作和分析的功能,因此本章节会提供较为详细的R语言open in new window的介绍以及与相关的许多第三方库的对比说明,比如我们的 pandas
库。在与R和CRAN库的比较中,我们关注以下事项:
- 功能/灵活性:每个工具可以/不可以做什么
- 性能:操作速度有多快。硬性数字/基准是优选的
- 易于使用:一种工具更容易/更难使用(您可能需要对此进行判断,并进行并排代码比较)
此页面还为这些R包的用户提供了一些翻译指南。
要将 DataFrame
对象从 pandas
转化为到 R 的数据类型,有一个选择是采用HDF5文件,请参阅外部兼容性open in new window示例。
快速参考
我们将从快速参考指南开始,将dplyropen in new window与pandas等效的一些常见R操作配对。
查询、过滤、采样
R | Pandas |
---|---|
dim(df) | df.shape |
head(df) | df.head() |
slice(df, 1:10) | df.iloc[:9] |
filter(df, col1 == 1, col2 == 1) | df.query('col1 == 1 & col2 == 1') |
df[df$col1 == 1 & df$col2 == 1,] | df[(df.col1 == 1) & (df.col2 == 1)] |
select(df, col1, col2) | df[['col1', 'col2']] |
select(df, col1:col3) | df.loc[:, 'col1':'col3'] |
select(df, -(col1:col3)) | df.drop(cols_to_drop, axis=1)但是看[1] |
distinct(select(df, col1)) | df[['col1']].drop_duplicates() |
distinct(select(df, col1, col2)) | df[['col1', 'col2']].drop_duplicates() |
sample_n(df, 10) | df.sample(n=10) |
sample_frac(df, 0.01) | df.sample(frac=0.01) |
Note
R表示列的子集 (select(df,col1:col3)
的缩写更接近 Pandas 的写法,如果您有列的列表,例如 df[cols[1:3]
或 df.drop(cols[1:3])
,按列名执行此操作可能会引起混乱。
排序
R | Pandas |
---|---|
arrange(df, col1, col2) | df.sort_values(['col1', 'col2']) |
arrange(df, desc(col1)) | df.sort_values('col1', ascending=False) |
变换
R | Pandas |
---|---|
select(df, col_one = col1) | df.rename(columns={'col1': 'col_one'})['col_one'] |
rename(df, col_one = col1) | df.rename(columns={'col1': 'col_one'}) |
mutate(df, c=a-b) | df.assign(c=df.a-df.b) |
分组和组合
R | Pandas |
---|---|
summary(df) | df.describe() |
gdf <- group_by(df, col1) | gdf = df.groupby('col1') |
summarise(gdf, avg=mean(col1, na.rm=TRUE)) | df.groupby('col1').agg({'col1': 'mean'}) |
summarise(gdf, total=sum(col1)) | df.groupby('col1').sum() |
基本的R用法
用Rc
方法来进行切片操作
R使您可以轻松地按名称访问列(data.frame
)
df <- data.frame(a=rnorm(5), b=rnorm(5), c=rnorm(5), d=rnorm(5), e=rnorm(5))
df[, c("a", "c", "e")]
或整数位置
df <- data.frame(matrix(rnorm(1000), ncol=100))
df[, c(1:10, 25:30, 40, 50:100)]
按名称选择多个pandas
的列非常简单
In [1]: df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc'))
In [2]: df[['a', 'c']]
Out[2]:
a c
0 0.469112 -1.509059
1 -1.135632 -0.173215
2 0.119209 -0.861849
3 -2.104569 1.071804
4 0.721555 -1.039575
5 0.271860 0.567020
6 0.276232 -0.673690
7 0.113648 0.524988
8 0.404705 -1.715002
9 -1.039268 -1.157892
In [3]: df.loc[:, ['a', 'c']]
Out[3]:
a c
0 0.469112 -1.509059
1 -1.135632 -0.173215
2 0.119209 -0.861849
3 -2.104569 1.071804
4 0.721555 -1.039575
5 0.271860 0.567020
6 0.276232 -0.673690
7 0.113648 0.524988
8 0.404705 -1.715002
9 -1.039268 -1.157892
通过整数位置选择多个不连续的列可以通过iloc
索引器属性和 numpy.r_
的组合来实现。
In [4]: named = list('abcdefg')
In [5]: n = 30
In [6]: columns = named + np.arange(len(named), n).tolist()
In [7]: df = pd.DataFrame(np.random.randn(n, n), columns=columns)
In [8]: df.iloc[:, np.r_[:10, 24:30]]
Out[8]:
a b c d e f g 7 8 9 24 25 26 27 28 29
0 -1.344312 0.844885 1.075770 -0.109050 1.643563 -1.469388 0.357021 -0.674600 -1.776904 -0.968914 -1.170299 -0.226169 0.410835 0.813850 0.132003 -0.827317
1 -0.076467 -1.187678 1.130127 -1.436737 -1.413681 1.607920 1.024180 0.569605 0.875906 -2.211372 0.959726 -1.110336 -0.619976 0.149748 -0.732339 0.687738
2 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849 -0.954208 1.462696 -1.743161 -0.826591 0.084844 0.432390 1.519970 -0.493662 0.600178 0.274230
3 0.132885 -0.023688 2.410179 1.450520 0.206053 -0.251905 -2.213588 1.063327 1.266143 0.299368 -2.484478 -0.281461 0.030711 0.109121 1.126203 -0.977349
4 1.474071 -0.064034 -1.282782 0.781836 -1.071357 0.441153 2.353925 0.583787 0.221471 -0.744471 -1.197071 -1.066969 -0.303421 -0.858447 0.306996 -0.028665
.. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
25 1.492125 -0.068190 0.681456 1.221829 -0.434352 1.204815 -0.195612 1.251683 -1.040389 -0.796211 1.944517 0.042344 -0.307904 0.428572 0.880609 0.487645
26 0.725238 0.624607 -0.141185 -0.143948 -0.328162 2.095086 -0.608888 -0.926422 1.872601 -2.513465 -0.846188 1.190624 0.778507 1.008500 1.424017 0.717110
27 1.262419 1.950057 0.301038 -0.933858 0.814946 0.181439 -0.110015 -2.364638 -1.584814 0.307941 -1.341814 0.334281 -0.162227 1.007824 2.826008 1.458383
28 -1.585746 -0.899734 0.921494 -0.211762 -0.059182 0.058308 0.915377 -0.696321 0.150664 -3.060395 0.403620 -0.026602 -0.240481 0.577223 -1.088417 0.326687
29 -0.986248 0.169729 -1.158091 1.019673 0.646039 0.917399 -0.010435 0.366366 0.922729 0.869610 -1.209247 -0.671466 0.332872 -2.013086 -1.602549 0.333109
[30 rows x 16 columns]
aggregate
在R中,您可能希望将数据分成几个子集,并计算每个子集的平均值。使用名为df
的data.frame并将其分成组by1
和by2
:
df <- data.frame(
v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),
v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99),
by1 = c("red", "blue", 1, 2, NA, "big", 1, 2, "red", 1, NA, 12),
by2 = c("wet", "dry", 99, 95, NA, "damp", 95, 99, "red", 99, NA, NA))
aggregate(x=df[, c("v1", "v2")], by=list(mydf2$by1, mydf2$by2), FUN = mean)
该groupby()
open in new window方法类似于基本R的 aggregate
函数。
In [9]: df = pd.DataFrame(
...: {'v1': [1, 3, 5, 7, 8, 3, 5, np.nan, 4, 5, 7, 9],
...: 'v2': [11, 33, 55, 77, 88, 33, 55, np.nan, 44, 55, 77, 99],
...: 'by1': ["red", "blue", 1, 2, np.nan, "big", 1, 2, "red", 1, np.nan, 12],
...: 'by2': ["wet", "dry", 99, 95, np.nan, "damp", 95, 99, "red", 99, np.nan,
...: np.nan]})
...:
In [10]: g = df.groupby(['by1', 'by2'])
In [11]: g[['v1', 'v2']].mean()
Out[11]:
v1 v2
by1 by2
1 95 5.0 55.0
99 5.0 55.0
2 95 7.0 77.0
99 NaN NaN
big damp 3.0 33.0
blue dry 3.0 33.0
red red 4.0 44.0
wet 1.0 11.0
有关更多详细信息和示例,请参阅groupby文档open in new window。
match
/ %in%
在R中选择数据的常用方法是使用%in%
使用该函数定义的数据match
。运算符%in%
用于返回指示是否存在匹配的逻辑向量:
s <- 0:4
s %in% c(2,4)
该isin()
open in new window方法类似于R %in%
运算符:
In [12]: s = pd.Series(np.arange(5), dtype=np.float32)
In [13]: s.isin([2, 4])
Out[13]:
0 False
1 False
2 True
3 False
4 True
dtype: bool
该match
函数返回其第二个参数匹配位置的向量:
s <- 0:4
match(s, c(2,4))
有关更多详细信息和示例,请参阅重塑文档open in new window。
tapply
tapply
类似于aggregate
,但数据可以是一个参差不齐的数组,因为子类大小可能是不规则的。使用调用的data.frame baseball
,并根据数组检索信息team
:
baseball <-
data.frame(team = gl(5, 5,
labels = paste("Team", LETTERS[1:5])),
player = sample(letters, 25),
batting.average = runif(25, .200, .400))
tapply(baseball$batting.average, baseball.example$team,
max)
在pandas
我们可以使用pivot_table()
open in new window方法来处理这个:
In [14]: import random
In [15]: import string
In [16]: baseball = pd.DataFrame(
....: {'team': ["team %d" % (x + 1) for x in range(5)] * 5,
....: 'player': random.sample(list(string.ascii_lowercase), 25),
....: 'batting avg': np.random.uniform(.200, .400, 25)})
....:
In [17]: baseball.pivot_table(values='batting avg', columns='team', aggfunc=np.max)
Out[17]:
team team 1 team 2 team 3 team 4 team 5
batting avg 0.352134 0.295327 0.397191 0.394457 0.396194
有关更多详细信息和示例,请参阅重塑文档open in new window。
subset
该query()
open in new window方法类似于基本R subset
函数。在R中,您可能希望获取data.frame
一列的值小于另一列的值的行:
df <- data.frame(a=rnorm(10), b=rnorm(10))
subset(df, a <= b)
df[df$a <= df$b,] # note the comma
在pandas
,有几种方法可以执行子集化。您可以使用 query()
open in new window或传递表达式,就像它是索引/切片以及标准布尔索引一样:
In [18]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})
In [19]: df.query('a <= b')
Out[19]:
a b
1 0.174950 0.552887
2 -0.023167 0.148084
3 -0.495291 -0.300218
4 -0.860736 0.197378
5 -1.134146 1.720780
7 -0.290098 0.083515
8 0.238636 0.946550
In [20]: df[df.a <= df.b]
Out[20]:
a b
1 0.174950 0.552887
2 -0.023167 0.148084
3 -0.495291 -0.300218
4 -0.860736 0.197378
5 -1.134146 1.720780
7 -0.290098 0.083515
8 0.238636 0.946550
In [21]: df.loc[df.a <= df.b]
Out[21]:
a b
1 0.174950 0.552887
2 -0.023167 0.148084
3 -0.495291 -0.300218
4 -0.860736 0.197378
5 -1.134146 1.720780
7 -0.290098 0.083515
8 0.238636 0.946550
有关更多详细信息和示例,请参阅查询文档open in new window。
with
使用df
带有列的R中调用的data.frame的表达式a
, b
将使用with
如下方式进行求值:
df <- data.frame(a=rnorm(10), b=rnorm(10))
with(df, a + b)
df$a + df$b # same as the previous expression
在pandas
等效表达式中,使用该 eval()
open in new window方法将是:
In [22]: df = pd.DataFrame({'a': np.random.randn(10), 'b': np.random.randn(10)})
In [23]: df.eval('a + b')
Out[23]:
0 -0.091430
1 -2.483890
2 -0.252728
3 -0.626444
4 -0.261740
5 2.149503
6 -0.332214
7 0.799331
8 -2.377245
9 2.104677
dtype: float64
In [24]: df.a + df.b # same as the previous expression
Out[24]:
0 -0.091430
1 -2.483890
2 -0.252728
3 -0.626444
4 -0.261740
5 2.149503
6 -0.332214
7 0.799331
8 -2.377245
9 2.104677
dtype: float64
在某些情况下,eval()
open in new window将比纯Python中的评估快得多。有关更多详细信息和示例,请参阅eval文档open in new window。
plyr
plyr
是用于数据分析的拆分应用组合策略的R库。这些函数围绕R,a
for arrays
,l
for lists
和d
for中的三个数据结构data.frame
。下表显示了如何在Python中映射这些数据结构。
R | Python |
---|---|
array | list |
lists | 字典(dist)或对象列表(list of objects) |
data.frame | dataframe |
ddply
在R中使用名为df
的data.frame的表达式,比如您有一个希望按月
汇总x
的需求:
require(plyr)
df <- data.frame(
x = runif(120, 1, 168),
y = runif(120, 7, 334),
z = runif(120, 1.7, 20.7),
month = rep(c(5,6,7,8),30),
week = sample(1:4, 120, TRUE)
)
ddply(df, .(month, week), summarize,
mean = round(mean(x), 2),
sd = round(sd(x), 2))
在pandas
等效表达式中,使用该 groupby()
open in new window方法将是:
In [25]: df = pd.DataFrame({'x': np.random.uniform(1., 168., 120),
....: 'y': np.random.uniform(7., 334., 120),
....: 'z': np.random.uniform(1.7, 20.7, 120),
....: 'month': [5, 6, 7, 8] * 30,
....: 'week': np.random.randint(1, 4, 120)})
....:
In [26]: grouped = df.groupby(['month', 'week'])
In [27]: grouped['x'].agg([np.mean, np.std])
Out[27]:
mean std
month week
5 1 63.653367 40.601965
2 78.126605 53.342400
3 92.091886 57.630110
6 1 81.747070 54.339218
2 70.971205 54.687287
3 100.968344 54.010081
7 1 61.576332 38.844274
2 61.733510 48.209013
3 71.688795 37.595638
8 1 62.741922 34.618153
2 91.774627 49.790202
3 73.936856 60.773900
有关更多详细信息和示例,请参阅groupby文档open in new window。
重塑/ reshape2
melt.array
使用a
在R中调用的3维数组的表达式,您希望将其融合到data.frame中:
a <- array(c(1:23, NA), c(2,3,4))
data.frame(melt(a))
在Python中,既然a
是一个列表,你可以简单地使用列表理解。
In [28]: a = np.array(list(range(1, 24)) + [np.NAN]).reshape(2, 3, 4)
In [29]: pd.DataFrame([tuple(list(x) + [val]) for x, val in np.ndenumerate(a)])
Out[29]:
0 1 2 3
0 0 0 0 1.0
1 0 0 1 2.0
2 0 0 2 3.0
3 0 0 3 4.0
4 0 1 0 5.0
.. .. .. .. ...
19 1 1 3 20.0
20 1 2 0 21.0
21 1 2 1 22.0
22 1 2 2 23.0
23 1 2 3 NaN
[24 rows x 4 columns]
melt.list
使用a
R中调用的列表的表达式,您希望将其融合到data.frame中:
a <- as.list(c(1:4, NA))
data.frame(melt(a))
在Python中,此列表将是元组列表,因此 DataFrame()
open in new window方法会根据需要将其转换为数据帧。
In [30]: a = list(enumerate(list(range(1, 5)) + [np.NAN]))
In [31]: pd.DataFrame(a)
Out[31]:
0 1
0 0 1.0
1 1 2.0
2 2 3.0
3 3 4.0
4 4 NaN
有关更多详细信息和示例,请参阅“进入数据结构”文档open in new window。
melt.data.frame
使用cheese
在R中调用的data.frame的表达式,您要在其中重新整形data.frame:
cheese <- data.frame(
first = c('John', 'Mary'),
last = c('Doe', 'Bo'),
height = c(5.5, 6.0),
weight = c(130, 150)
)
melt(cheese, id=c("first", "last"))
在Python中,该melt()
open in new window方法是R等价物:
In [32]: cheese = pd.DataFrame({'first': ['John', 'Mary'],
....: 'last': ['Doe', 'Bo'],
....: 'height': [5.5, 6.0],
....: 'weight': [130, 150]})
....:
In [33]: pd.melt(cheese, id_vars=['first', 'last'])
Out[33]:
first last variable value
0 John Doe height 5.5
1 Mary Bo height 6.0
2 John Doe weight 130.0
3 Mary Bo weight 150.0
In [34]: cheese.set_index(['first', 'last']).stack() # alternative way
Out[34]:
first last
John Doe height 5.5
weight 130.0
Mary Bo height 6.0
weight 150.0
dtype: float64
有关更多详细信息和示例,请参阅重塑文档open in new window。
cast
在R中acast
是一个表达式,它使用df
在R中调用的data.frame 来转换为更高维的数组:
df <- data.frame(
x = runif(12, 1, 168),
y = runif(12, 7, 334),
z = runif(12, 1.7, 20.7),
month = rep(c(5,6,7),4),
week = rep(c(1,2), 6)
)
mdf <- melt(df, id=c("month", "week"))
acast(mdf, week ~ month ~ variable, mean)
在Python中,最好的方法是使用pivot_table()
open in new window:
In [35]: df = pd.DataFrame({'x': np.random.uniform(1., 168., 12),
....: 'y': np.random.uniform(7., 334., 12),
....: 'z': np.random.uniform(1.7, 20.7, 12),
....: 'month': [5, 6, 7] * 4,
....: 'week': [1, 2] * 6})
....:
In [36]: mdf = pd.melt(df, id_vars=['month', 'week'])
In [37]: pd.pivot_table(mdf, values='value', index=['variable', 'week'],
....: columns=['month'], aggfunc=np.mean)
....:
Out[37]:
month 5 6 7
variable week
x 1 93.888747 98.762034 55.219673
2 94.391427 38.112932 83.942781
y 1 94.306912 279.454811 227.840449
2 87.392662 193.028166 173.899260
z 1 11.016009 10.079307 16.170549
2 8.476111 17.638509 19.003494
类似地dcast
,使用df
R中调用的data.frame 来基于Animal
和聚合信息FeedType
:
df <- data.frame(
Animal = c('Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
'Animal2', 'Animal3'),
FeedType = c('A', 'B', 'A', 'A', 'B', 'B', 'A'),
Amount = c(10, 7, 4, 2, 5, 6, 2)
)
dcast(df, Animal ~ FeedType, sum, fill=NaN)
# Alternative method using base R
with(df, tapply(Amount, list(Animal, FeedType), sum))
Python可以通过两种不同的方式处理它。首先,类似于上面使用pivot_table()
open in new window:
In [38]: df = pd.DataFrame({
....: 'Animal': ['Animal1', 'Animal2', 'Animal3', 'Animal2', 'Animal1',
....: 'Animal2', 'Animal3'],
....: 'FeedType': ['A', 'B', 'A', 'A', 'B', 'B', 'A'],
....: 'Amount': [10, 7, 4, 2, 5, 6, 2],
....: })
....:
In [39]: df.pivot_table(values='Amount', index='Animal', columns='FeedType',
....: aggfunc='sum')
....:
Out[39]:
FeedType A B
Animal
Animal1 10.0 5.0
Animal2 2.0 13.0
Animal3 6.0 NaN
第二种方法是使用该groupby()
open in new window方法:
In [40]: df.groupby(['Animal', 'FeedType'])['Amount'].sum()
Out[40]:
Animal FeedType
Animal1 A 10
B 5
Animal2 A 2
B 13
Animal3 A 6
Name: Amount, dtype: int64
有关更多详细信息和示例,请参阅重新整形文档open in new window或groupby文档open in new window。
factor
pandas具有分类数据的数据类型。
cut(c(1,2,3,4,5,6), 3)
factor(c(1,2,3,2,2,3))
在Pandas,这是完成与pd.cut
和astype("category")
:
In [41]: pd.cut(pd.Series([1, 2, 3, 4, 5, 6]), 3)
Out[41]:
0 (0.995, 2.667]
1 (0.995, 2.667]
2 (2.667, 4.333]
3 (2.667, 4.333]
4 (4.333, 6.0]
5 (4.333, 6.0]
dtype: category
Categories (3, interval[float64]): [(0.995, 2.667] < (2.667, 4.333] < (4.333, 6.0]]
In [42]: pd.Series([1, 2, 3, 2, 2, 3]).astype("category")
Out[42]:
0 1
1 2
2 3
3 2
4 2
5 3
dtype: category
Categories (3, int64): [1, 2, 3]
有关更多详细信息和示例,请参阅分类介绍open in new window和 API文档open in new window。还有一个关于R因子差异open in new window的文档 。
与SQL比较
由于许多潜在的 pandas 用户对SQLopen in new window有一定的了解 ,因此本页面旨在提供一些使用pandas如何执行各种SQL操作的示例。
如果您是 pandas 的新手,您可能需要先阅读十分钟入门Pandas 以熟悉本库。
按照惯例,我们按如下方式导入 pandas 和 NumPy:
In [1]: import pandas as pd
In [2]: import numpy as np
大多数示例将使用tips
pandas测试中找到的数据集。我们将数据读入名为tips的DataFrame中,并假设我们有一个具有相同名称和结构的数据库表。
In [3]: url = ('https://raw.github.com/pandas-dev'
...: '/pandas/master/pandas/tests/data/tips.csv')
...:
In [4]: tips = pd.read_csv(url)
In [5]: tips.head()
Out[5]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
SELECT
在SQL中,使用您要选择的以逗号分隔的列列表(或*
选择所有列)来完成选择:
SELECT total_bill, tip, smoker, time
FROM tips
LIMIT 5;
使用pandas,通过将列名列表传递给DataFrame来完成列选择:
In [6]: tips[['total_bill', 'tip', 'smoker', 'time']].head(5)
Out[6]:
total_bill tip smoker time
0 16.99 1.01 No Dinner
1 10.34 1.66 No Dinner
2 21.01 3.50 No Dinner
3 23.68 3.31 No Dinner
4 24.59 3.61 No Dinner
在没有列名列表的情况下调用DataFrame将显示所有列(类似于SQL*
)。
WHERE
SQL中的过滤是通过WHERE子句完成的。
SELECT *
FROM tips
WHERE time = 'Dinner'
LIMIT 5;
DataFrame可以通过多种方式进行过滤; 最直观的是使用 布尔索引open in new window。
In [7]: tips[tips['time'] == 'Dinner'].head(5)
Out[7]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
上面的语句只是将一个 Series
的 True / False 对象传递给 DataFrame,返回所有带有True的行。
In [8]: is_dinner = tips['time'] == 'Dinner'
In [9]: is_dinner.value_counts()
Out[9]:
True 176
False 68
Name: time, dtype: int64
In [10]: tips[is_dinner].head(5)
Out[10]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
就像SQL的OR和AND一样,可以使用|将多个条件传递给DataFrame (OR)和&(AND)。
-- tips of more than $5.00 at Dinner meals
SELECT *
FROM tips
WHERE time = 'Dinner' AND tip > 5.00;
# tips of more than $5.00 at Dinner meals
In [11]: tips[(tips['time'] == 'Dinner') & (tips['tip'] > 5.00)]
Out[11]:
total_bill tip sex smoker day time size
23 39.42 7.58 Male No Sat Dinner 4
44 30.40 5.60 Male No Sun Dinner 4
47 32.40 6.00 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
59 48.27 6.73 Male No Sat Dinner 4
116 29.93 5.07 Male No Sun Dinner 4
155 29.85 5.14 Female No Sun Dinner 5
170 50.81 10.00 Male Yes Sat Dinner 3
172 7.25 5.15 Male Yes Sun Dinner 2
181 23.33 5.65 Male Yes Sun Dinner 2
183 23.17 6.50 Male Yes Sun Dinner 4
211 25.89 5.16 Male Yes Sat Dinner 4
212 48.33 9.00 Male No Sat Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
239 29.03 5.92 Male No Sat Dinner 3
-- tips by parties of at least 5 diners OR bill total was more than $45
SELECT *
FROM tips
WHERE size >= 5 OR total_bill > 45;
# tips by parties of at least 5 diners OR bill total was more than $45
In [12]: tips[(tips['size'] >= 5) | (tips['total_bill'] > 45)]
Out[12]:
total_bill tip sex smoker day time size
59 48.27 6.73 Male No Sat Dinner 4
125 29.80 4.20 Female No Thur Lunch 6
141 34.30 6.70 Male No Thur Lunch 6
142 41.19 5.00 Male No Thur Lunch 5
143 27.05 5.00 Female No Thur Lunch 6
155 29.85 5.14 Female No Sun Dinner 5
156 48.17 5.00 Male No Sun Dinner 6
170 50.81 10.00 Male Yes Sat Dinner 3
182 45.35 3.50 Male Yes Sun Dinner 3
185 20.69 5.00 Male No Sun Dinner 5
187 30.46 2.00 Male Yes Sun Dinner 5
212 48.33 9.00 Male No Sat Dinner 4
216 28.15 3.00 Male Yes Sat Dinner 5
使用notna()
open in new window和isna()
open in new window 方法完成NULL检查。
In [13]: frame = pd.DataFrame({'col1': ['A', 'B', np.NaN, 'C', 'D'],
....: 'col2': ['F', np.NaN, 'G', 'H', 'I']})
....:
In [14]: frame
Out[14]:
col1 col2
0 A F
1 B NaN
2 NaN G
3 C H
4 D I
假设我们有一个与上面的DataFrame结构相同的表。我们只能col2
通过以下查询看到IS NULL 的记录:
SELECT *
FROM frame
WHERE col2 IS NULL;
In [15]: frame[frame['col2'].isna()]
Out[15]:
col1 col2
1 B NaN
获取col1
IS NOT NULL的项目可以完成notna()
open in new window。
SELECT *
FROM frame
WHERE col1 IS NOT NULL;
In [16]: frame[frame['col1'].notna()]
Out[16]:
col1 col2
0 A F
1 B NaN
3 C H
4 D I
GROUP BY
在pandas中,SQL的GROUP BY操作使用类似命名的 groupby()
open in new window方法执行。groupby()
open in new window通常是指我们想要将数据集拆分成组,应用某些功能(通常是聚合),然后将这些组合在一起的过程。
常见的SQL操作是获取整个数据集中每个组中的记录数。例如,有一个需要向我们提供提示中的性别的数量的查询语句:
SELECT sex, count(*)
FROM tips
GROUP BY sex;
/*
Female 87
Male 157
*/
在 pandas 中可以这样:
In [17]: tips.groupby('sex').size()
Out[17]:
sex
Female 87
Male 157
dtype: int64
请注意,在我们使用的pandas代码中size()
open in new window,没有 count()
open in new window。这是因为 count()
open in new window将函数应用于每个列,返回每个列中的记录数。not null
In [18]: tips.groupby('sex').count()
Out[18]:
total_bill tip smoker day time size
sex
Female 87 87 87 87 87 87
Male 157 157 157 157 157 157
或者,我们可以将该count()
open in new window方法应用于单个列:
In [19]: tips.groupby('sex')['total_bill'].count()
Out[19]:
sex
Female 87
Male 157
Name: total_bill, dtype: int64
也可以一次应用多个功能。例如,假设我们希望查看提示量与星期几的不同之处 - agg()
允许您将字典传递给分组的DataFrame,指示要应用于特定列的函数。
SELECT day, AVG(tip), COUNT(*)
FROM tips
GROUP BY day;
/*
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
*/
In [20]: tips.groupby('day').agg({'tip': np.mean, 'day': np.size})
Out[20]:
tip day
day
Fri 2.734737 19
Sat 2.993103 87
Sun 3.255132 76
Thur 2.771452 62
通过将列列表传递给groupby()
open in new window方法来完成多个列的分组 。
SELECT smoker, day, COUNT(*), AVG(tip)
FROM tips
GROUP BY smoker, day;
/*
smoker day
No Fri 4 2.812500
Sat 45 3.102889
Sun 57 3.167895
Thur 45 2.673778
Yes Fri 15 2.714000
Sat 42 2.875476
Sun 19 3.516842
Thur 17 3.030000
*/
In [21]: tips.groupby(['smoker', 'day']).agg({'tip': [np.size, np.mean]})
Out[21]:
tip
size mean
smoker day
No Fri 4.0 2.812500
Sat 45.0 3.102889
Sun 57.0 3.167895
Thur 45.0 2.673778
Yes Fri 15.0 2.714000
Sat 42.0 2.875476
Sun 19.0 3.516842
Thur 17.0 3.030000
JOIN
可以使用join()
open in new window或执行JOIN merge()
open in new window。默认情况下, join()
open in new window将在其索引上加入DataFrame。每个方法都有参数,允许您指定要执行的连接类型(LEFT,RIGHT,INNER,FULL)或要连接的列(列名称或索引)。
In [22]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:
In [23]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:
假设我们有两个与DataFrames名称和结构相同的数据库表。
现在让我们来看看各种类型的JOIN。
INNER JOIN
SELECT *
FROM df1
INNER JOIN df2
ON df1.key = df2.key;
# merge performs an INNER JOIN by default
In [24]: pd.merge(df1, df2, on='key')
Out[24]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
merge()
open in new window 当您想要将一个DataFrame列与另一个DataFrame索引连接时,还会为这些情况提供参数。
In [25]: indexed_df2 = df2.set_index('key')
In [26]: pd.merge(df1, indexed_df2, left_on='key', right_index=True)
Out[26]:
key value_x value_y
1 B -0.282863 1.212112
3 D -1.135632 -0.173215
3 D -1.135632 0.119209
LEFT OUTER JOIN
-- show all records from df1
SELECT *
FROM df1
LEFT OUTER JOIN df2
ON df1.key = df2.key;
# show all records from df1
In [27]: pd.merge(df1, df2, on='key', how='left')
Out[27]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
RIGHT JOIN
-- show all records from df2
SELECT *
FROM df1
RIGHT OUTER JOIN df2
ON df1.key = df2.key;
# show all records from df2
In [28]: pd.merge(df1, df2, on='key', how='right')
Out[28]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
3 E NaN -1.044236
FULL JOIN
pandas还允许显示数据集两侧的FULL JOIN,无论连接列是否找到匹配项。在编写时,所有RDBMS(MySQL)都不支持FULL JOIN。
-- show all records from both tables
SELECT *
FROM df1
FULL OUTER JOIN df2
ON df1.key = df2.key;
# show all records from both frames
In [29]: pd.merge(df1, df2, on='key', how='outer')
Out[29]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
UNION
UNION ALL可以使用concat()
open in new window。
In [30]: df1 = pd.DataFrame({'city': ['Chicago', 'San Francisco', 'New York City'],
....: 'rank': range(1, 4)})
....:
In [31]: df2 = pd.DataFrame({'city': ['Chicago', 'Boston', 'Los Angeles'],
....: 'rank': [1, 4, 5]})
....:
SELECT city, rank
FROM df1
UNION ALL
SELECT city, rank
FROM df2;
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Chicago 1
Boston 4
Los Angeles 5
*/
In [32]: pd.concat([df1, df2])
Out[32]:
city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
0 Chicago 1
1 Boston 4
2 Los Angeles 5
SQL的UNION类似于UNION ALL,但是UNION将删除重复的行。
SELECT city, rank
FROM df1
UNION
SELECT city, rank
FROM df2;
-- notice that there is only one Chicago record this time
/*
city rank
Chicago 1
San Francisco 2
New York City 3
Boston 4
Los Angeles 5
*/
在 pandas 中,您可以concat()
open in new window结合使用 drop_duplicates()
open in new window。
In [33]: pd.concat([df1, df2]).drop_duplicates()
Out[33]:
city rank
0 Chicago 1
1 San Francisco 2
2 New York City 3
1 Boston 4
2 Los Angeles 5
Pandas等同于某些SQL分析和聚合函数
带有偏移量的前N行
-- MySQL
SELECT * FROM tips
ORDER BY tip DESC
LIMIT 10 OFFSET 5;
In [34]: tips.nlargest(10 + 5, columns='tip').tail(10)
Out[34]:
total_bill tip sex smoker day time size
183 23.17 6.50 Male Yes Sun Dinner 4
214 28.17 6.50 Female Yes Sat Dinner 3
47 32.40 6.00 Male No Sun Dinner 4
239 29.03 5.92 Male No Sat Dinner 3
88 24.71 5.85 Male No Thur Lunch 2
181 23.33 5.65 Male Yes Sun Dinner 2
44 30.40 5.60 Male No Sun Dinner 4
52 34.81 5.20 Female No Sun Dinner 4
85 34.83 5.17 Female No Thur Lunch 4
211 25.89 5.16 Male Yes Sat Dinner 4
每组前N行
-- Oracle's ROW_NUMBER() analytic function
SELECT * FROM (
SELECT
t.*,
ROW_NUMBER() OVER(PARTITION BY day ORDER BY total_bill DESC) AS rn
FROM tips t
)
WHERE rn < 3
ORDER BY day, rn;
In [35]: (tips.assign(rn=tips.sort_values(['total_bill'], ascending=False)
....: .groupby(['day'])
....: .cumcount() + 1)
....: .query('rn < 3')
....: .sort_values(['day', 'rn']))
....:
Out[35]:
total_bill tip sex smoker day time size rn
95 40.17 4.73 Male Yes Fri Dinner 4 1
90 28.97 3.00 Male Yes Fri Dinner 2 2
170 50.81 10.00 Male Yes Sat Dinner 3 1
212 48.33 9.00 Male No Sat Dinner 4 2
156 48.17 5.00 Male No Sun Dinner 6 1
182 45.35 3.50 Male Yes Sun Dinner 3 2
197 43.11 5.00 Female Yes Thur Lunch 4 1
142 41.19 5.00 Male No Thur Lunch 5 2
同样使用 rank (method ='first') 函数
In [36]: (tips.assign(rnk=tips.groupby(['day'])['total_bill']
....: .rank(method='first', ascending=False))
....: .query('rnk < 3')
....: .sort_values(['day', 'rnk']))
....:
Out[36]:
total_bill tip sex smoker day time size rnk
95 40.17 4.73 Male Yes Fri Dinner 4 1.0
90 28.97 3.00 Male Yes Fri Dinner 2 2.0
170 50.81 10.00 Male Yes Sat Dinner 3 1.0
212 48.33 9.00 Male No Sat Dinner 4 2.0
156 48.17 5.00 Male No Sun Dinner 6 1.0
182 45.35 3.50 Male Yes Sun Dinner 3 2.0
197 43.11 5.00 Female Yes Thur Lunch 4 1.0
142 41.19 5.00 Male No Thur Lunch 5 2.0
-- Oracle's RANK() analytic function
SELECT * FROM (
SELECT
t.*,
RANK() OVER(PARTITION BY sex ORDER BY tip) AS rnk
FROM tips t
WHERE tip < 2
)
WHERE rnk < 3
ORDER BY sex, rnk;
让我们找到每个性别组(等级<3)的提示(提示<2)。请注意,使用rank(method='min')
函数时 rnk_min对于相同的提示保持不变 (如Oracle的RANK()函数)
In [37]: (tips[tips['tip'] < 2]
....: .assign(rnk_min=tips.groupby(['sex'])['tip']
....: .rank(method='min'))
....: .query('rnk_min < 3')
....: .sort_values(['sex', 'rnk_min']))
....:
Out[37]:
total_bill tip sex smoker day time size rnk_min
67 3.07 1.00 Female Yes Sat Dinner 1 1.0
92 5.75 1.00 Female Yes Fri Dinner 2 1.0
111 7.25 1.00 Female No Sat Dinner 1 1.0
236 12.60 1.00 Male Yes Sat Dinner 2 1.0
237 32.83 1.17 Male Yes Sat Dinner 2 2.0
更新(UPDATE)
UPDATE tips
SET tip = tip*2
WHERE tip < 2;
In [38]: tips.loc[tips['tip'] < 2, 'tip'] *= 2
删除(DELETE)
DELETE FROM tips
WHERE tip > 9;
在pandas中,我们选择应保留的行,而不是删除它们
In [39]: tips = tips.loc[tips['tip'] <= 9]
与SAS的比较
对于来自 SASopen in new window 的潜在用户,本节旨在演示如何在 pandas 中做各种类似SAS的操作。
由于许多潜在的 pandas 用户对SQLopen in new window有一定的了解,因此本页面旨在提供一些使用 pandas 如何执行各种SQL操作的示例。
如果您是 pandas 的新手,您可能需要先阅读十分钟入门Pandas 以熟悉本库。
按照惯例,我们按如下方式导入 pandas 和 NumPy:
In [1]: import pandas as pd
In [2]: import numpy as np
注意
在本教程中,DataFrame
将通过调用显示 pandas df.head()
,它将显示该行的前N行(默认为5行)DataFrame
。这通常用于交互式工作(例如Jupyter笔记本open in new window或终端) - SAS中的等价物将是:
proc print data=df(obs=5);
run;
数据结构
一般术语对照表
Pandas | SAS |
---|---|
DataFrame | 数据集(data set) |
column | 变量(variable) |
row | 观察(observation) |
groupby | BY-group |
NaN | . |
DataFrame
/ Series
A DataFrame
pandas类似于SAS数据集 - 具有标记列的二维数据源,可以是不同类型的。如本文档所示,几乎所有可以使用SAS DATA
步骤应用于数据集的操作也可以在pandas中完成。
A Series
是表示a的一列的数据结构 DataFrame
。SAS没有针对单个列的单独数据结构,但通常,使用a Series
类似于在DATA
步骤中引用列。
Index
每一个DataFrame
和Series
有一个Index
-这是对标签 的行数据。SAS没有完全类似的概念。除了在DATA
step(_N_
)期间可以访问的隐式整数索引之外,数据集的行基本上是未标记的。
在pandas中,如果未指定索引,则默认情况下也使用整数索引(第一行= 0,第二行= 1,依此类推)。虽然使用标记Index
或 MultiIndex
可以启用复杂的分析,并且最终是 Pandas 理解的重要部分,但是对于这种比较,我们基本上会忽略它, Index
并且只是将其DataFrame
视为列的集合。有关如何有效使用的更多信息, 请参阅索引文档open in new windowIndex
。
数据输入/输出
从值构造DataFrame
通过将数据放在datalines
语句之后并指定列名,可以从指定值构建SAS数据集。
data df;
input x y;
datalines;
1 2
3 4
5 6
;
run;
DataFrame
可以用许多不同的方式构造一个pandas ,但是对于少量的值,通常很方便将它指定为Python字典,其中键是列名,值是数据。
In [3]: df = pd.DataFrame({'x': [1, 3, 5], 'y': [2, 4, 6]})
In [4]: df
Out[4]:
x y
0 1 2
1 3 4
2 5 6
读取外部数据
与SAS一样,pandas提供了从多种格式读取数据的实用程序。tips
在pandas测试(csvopen in new window)中找到的数据集将用于以下许多示例中。
SAS提供将csv数据读入数据集。PROC IMPORT
proc import datafile='tips.csv' dbms=csv out=tips replace;
getnames=yes;
run;
Pandas 方法是read_csv()
open in new window类似的。
In [5]: url = ('https://raw.github.com/pandas-dev/'
...: 'pandas/master/pandas/tests/data/tips.csv')
...:
In [6]: tips = pd.read_csv(url)
In [7]: tips.head()
Out[7]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
比如,可以使用许多参数来指定数据应该如何解析。例如,如果数据是由制表符分隔的,并且没有列名,那么pandas命令将是:PROC IMPORT````read_csv
tips = pd.read_csv('tips.csv', sep='\t', header=None)
# alternatively, read_table is an alias to read_csv with tab delimiter
tips = pd.read_table('tips.csv', header=None)
除了text / csv之外,pandas还支持各种其他数据格式,如Excel,HDF5和SQL数据库。这些都是通过pd.read_*
函数读取的。有关更多详细信息,请参阅IO文档open in new window。
导出数据
在SAS中proc导入
相反就是proc导出
proc export data=tips outfile='tips2.csv' dbms=csv;
run;
类似地,在 Pandas ,相反read_csv
是to_csv()
open in new window,与其他的数据格式遵循类似的API。
tips.to_csv('tips2.csv')
数据操作
列上的操作
在该DATA
步骤中,可以在新列或现有列上使用任意数学表达式。
data tips;
set tips;
total_bill = total_bill - 2;
new_bill = total_bill / 2;
run;
pandas 通过指定个体提供了类似的矢量化操作Series
中DataFrame
。可以以相同的方式分配新列。
In [8]: tips['total_bill'] = tips['total_bill'] - 2
In [9]: tips['new_bill'] = tips['total_bill'] / 2.0
In [10]: tips.head()
Out[10]:
total_bill tip sex smoker day time size new_bill
0 14.99 1.01 Female No Sun Dinner 2 7.495
1 8.34 1.66 Male No Sun Dinner 3 4.170
2 19.01 3.50 Male No Sun Dinner 3 9.505
3 21.68 3.31 Male No Sun Dinner 2 10.840
4 22.59 3.61 Female No Sun Dinner 4 11.295
过滤
SAS中的过滤是通过一个或多个列上的if
或where
语句完成的。
data tips;
set tips;
if total_bill > 10;
run;
data tips;
set tips;
where total_bill > 10;
/* equivalent in this case - where happens before the
DATA step begins and can also be used in PROC statements */
run;
DataFrame可以通过多种方式进行过滤; 最直观的是使用 布尔索引open in new window
In [11]: tips[tips['total_bill'] > 10].head()
Out[11]:
total_bill tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
5 23.29 4.71 Male No Sun Dinner 4
如果/那么逻辑
在SAS中,if / then逻辑可用于创建新列。
data tips;
set tips;
format bucket $4.;
if total_bill < 10 then bucket = 'low';
else bucket = 'high';
run;
Pandas 中的相同操作可以使用where
来自的方法来完成numpy
。
In [12]: tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')
In [13]: tips.head()
Out[13]:
total_bill tip sex smoker day time size bucket
0 14.99 1.01 Female No Sun Dinner 2 high
1 8.34 1.66 Male No Sun Dinner 3 low
2 19.01 3.50 Male No Sun Dinner 3 high
3 21.68 3.31 Male No Sun Dinner 2 high
4 22.59 3.61 Female No Sun Dinner 4 high
日期功能
SAS提供了各种功能来对日期/日期时间列进行操作。
data tips;
set tips;
format date1 date2 date1_plusmonth mmddyy10.;
date1 = mdy(1, 15, 2013);
date2 = mdy(2, 15, 2015);
date1_year = year(date1);
date2_month = month(date2);
* shift date to beginning of next interval;
date1_next = intnx('MONTH', date1, 1);
* count intervals between dates;
months_between = intck('MONTH', date1, date2);
run;
等效的pandas操作如下所示。除了这些功能外,pandas还支持Base SAS中不具备的其他时间序列功能(例如重新采样和自定义偏移) - 有关详细信息,请参阅时间序列文档open in new window。
In [14]: tips['date1'] = pd.Timestamp('2013-01-15')
In [15]: tips['date2'] = pd.Timestamp('2015-02-15')
In [16]: tips['date1_year'] = tips['date1'].dt.year
In [17]: tips['date2_month'] = tips['date2'].dt.month
In [18]: tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()
In [19]: tips['months_between'] = (
....: tips['date2'].dt.to_period('M') - tips['date1'].dt.to_period('M'))
....:
In [20]: tips[['date1', 'date2', 'date1_year', 'date2_month',
....: 'date1_next', 'months_between']].head()
....:
Out[20]:
date1 date2 date1_year date2_month date1_next months_between
0 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
1 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
2 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
3 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
4 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
列的选择
SAS在DATA
步骤中提供关键字以选择,删除和重命名列。
data tips;
set tips;
keep sex total_bill tip;
run;
data tips;
set tips;
drop sex;
run;
data tips;
set tips;
rename total_bill=total_bill_2;
run;
下面的 Pandas 表示相同的操作。
# keep
In [21]: tips[['sex', 'total_bill', 'tip']].head()
Out[21]:
sex total_bill tip
0 Female 14.99 1.01
1 Male 8.34 1.66
2 Male 19.01 3.50
3 Male 21.68 3.31
4 Female 22.59 3.61
# drop
In [22]: tips.drop('sex', axis=1).head()
Out[22]:
total_bill tip smoker day time size
0 14.99 1.01 No Sun Dinner 2
1 8.34 1.66 No Sun Dinner 3
2 19.01 3.50 No Sun Dinner 3
3 21.68 3.31 No Sun Dinner 2
4 22.59 3.61 No Sun Dinner 4
# rename
In [23]: tips.rename(columns={'total_bill': 'total_bill_2'}).head()
Out[23]:
total_bill_2 tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
1 8.34 1.66 Male No Sun Dinner 3
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
按值排序
SAS中的排序是通过 PROC SORT
proc sort data=tips;
by sex total_bill;
run;
pandas对象有一个sort_values()
open in new window方法,它采用列表进行排序。
In [24]: tips = tips.sort_values(['sex', 'total_bill'])
In [25]: tips.head()
Out[25]:
total_bill tip sex smoker day time size
67 1.07 1.00 Female Yes Sat Dinner 1
92 3.75 1.00 Female Yes Fri Dinner 2
111 5.25 1.00 Female No Sat Dinner 1
145 6.35 1.50 Female No Thur Lunch 2
135 6.51 1.25 Female No Thur Lunch 2
字符串处理
长度
SAS使用LENGTHNopen in new window 和LENGTHCopen in new window 函数确定字符串的长度 。LENGTHN
排除尾随空白并LENGTHC
包括尾随空白。
data _null_;
set tips;
put(LENGTHN(time));
put(LENGTHC(time));
run;
Python使用该len
函数确定字符串的长度。 len
包括尾随空白。使用len
和rstrip
排除尾随空格。
In [26]: tips['time'].str.len().head()
Out[26]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64
In [27]: tips['time'].str.rstrip().str.len().head()
Out[27]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64
查找(Find)
SAS使用FINDWopen in new window函数确定字符串中字符的位置 。 FINDW
获取第一个参数定义的字符串,并搜索您提供的子字符串的第一个位置作为第二个参数。
data _null_;
set tips;
put(FINDW(sex,'ale'));
run;
Python使用find
函数确定字符串中字符的位置 。 find
搜索子字符串的第一个位置。如果找到子字符串,则该函数返回其位置。请记住,Python索引是从零开始的,如果找不到子串,函数将返回-1。
In [28]: tips['sex'].str.find("ale").head()
Out[28]:
67 3
92 3
111 3
145 3
135 3
Name: sex, dtype: int64
字符串提取(Substring)
SAS使用SUBSTRopen in new window函数根据其位置从字符串中提取子字符串 。
data _null_;
set tips;
put(substr(sex,1,1));
run;
使用pandas,您可以使用[]
符号从位置位置提取字符串中的子字符串。请记住,Python索引是从零开始的。
In [29]: tips['sex'].str[0:1].head()
Out[29]:
67 F
92 F
111 F
145 F
135 F
Name: sex, dtype: object
SCAN
SAS SCANopen in new window 函数返回字符串中的第n个字。第一个参数是要解析的字符串,第二个参数指定要提取的字。
data firstlast;
input String $60.;
First_Name = scan(string, 1);
Last_Name = scan(string, -1);
datalines2;
John Smith;
Jane Cook;
;;;
run;
Python使用正则表达式根据文本从字符串中提取子字符串。有更强大的方法,但这只是一个简单的方法。
In [30]: firstlast = pd.DataFrame({'String': ['John Smith', 'Jane Cook']})
In [31]: firstlast['First_Name'] = firstlast['String'].str.split(" ", expand=True)[0]
In [32]: firstlast['Last_Name'] = firstlast['String'].str.rsplit(" ", expand=True)[0]
In [33]: firstlast
Out[33]:
String First_Name Last_Name
0 John Smith John John
1 Jane Cook Jane Jane
大写,小写和特殊转换
SAS UPCASE open in new windowLOWCASEopen in new window和 PROPCASEopen in new window 函数改变了参数的大小写。
data firstlast;
input String $60.;
string_up = UPCASE(string);
string_low = LOWCASE(string);
string_prop = PROPCASE(string);
datalines2;
John Smith;
Jane Cook;
;;;
run;
等效Python的功能upper
,lower
和title
。
In [34]: firstlast = pd.DataFrame({'String': ['John Smith', 'Jane Cook']})
In [35]: firstlast['string_up'] = firstlast['String'].str.upper()
In [36]: firstlast['string_low'] = firstlast['String'].str.lower()
In [37]: firstlast['string_prop'] = firstlast['String'].str.title()
In [38]: firstlast
Out[38]:
String string_up string_low string_prop
0 John Smith JOHN SMITH john smith John Smith
1 Jane Cook JANE COOK jane cook Jane Cook
合并(Merging)
合并示例中将使用以下表格
In [39]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:
In [40]: df1
Out[40]:
key value
0 A 0.469112
1 B -0.282863
2 C -1.509059
3 D -1.135632
In [41]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:
In [42]: df2
Out[42]:
key value
0 B 1.212112
1 D -0.173215
2 D 0.119209
3 E -1.044236
在SAS中,必须在合并之前显式排序数据。使用in=
虚拟变量来跟踪是否在一个或两个输入帧中找到匹配来完成不同类型的连接。
proc sort data=df1;
by key;
run;
proc sort data=df2;
by key;
run;
data left_join inner_join right_join outer_join;
merge df1(in=a) df2(in=b);
if a and b then output inner_join;
if a then output left_join;
if b then output right_join;
if a or b then output outer_join;
run;
pandas DataFrames有一个merge()
open in new window提供类似功能的方法。请注意,数据不必提前排序,并且通过how
关键字可以实现不同的连接类型。
In [43]: inner_join = df1.merge(df2, on=['key'], how='inner')
In [44]: inner_join
Out[44]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
In [45]: left_join = df1.merge(df2, on=['key'], how='left')
In [46]: left_join
Out[46]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
In [47]: right_join = df1.merge(df2, on=['key'], how='right')
In [48]: right_join
Out[48]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
3 E NaN -1.044236
In [49]: outer_join = df1.merge(df2, on=['key'], how='outer')
In [50]: outer_join
Out[50]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
缺失数据(Missing data)
与SAS一样,pandas具有丢失数据的表示 - 这是特殊浮点值NaN
(不是数字)。许多语义都是相同的,例如,丢失的数据通过数字操作传播,默认情况下会被聚合忽略。
In [51]: outer_join
Out[51]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
In [52]: outer_join['value_x'] + outer_join['value_y']
Out[52]:
0 NaN
1 0.929249
2 NaN
3 -1.308847
4 -1.016424
5 NaN
dtype: float64
In [53]: outer_join['value_x'].sum()
Out[53]: -3.5940742896293765
一个区别是丢失的数据无法与其哨兵值进行比较。例如,在SAS中,您可以执行此操作以过滤缺失值。
data outer_join_nulls;
set outer_join;
if value_x = .;
run;
data outer_join_no_nulls;
set outer_join;
if value_x ^= .;
run;
这在 Pandas 中不起作用。相反,应使用pd.isna
或pd.notna
函数进行比较。
In [54]: outer_join[pd.isna(outer_join['value_x'])]
Out[54]:
key value_x value_y
5 E NaN -1.044236
In [55]: outer_join[pd.notna(outer_join['value_x'])]
Out[55]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
pandas还提供了各种方法来处理丢失的数据 - 其中一些方法在SAS中表达起来很有挑战性。例如,有一些方法可以删除具有任何缺失值的所有行,使用指定值替换缺失值,例如平均值或前一行的前向填充。看到 丢失的数据文件open in new window为多。
In [56]: outer_join.dropna()
Out[56]:
key value_x value_y
1 B -0.282863 1.212112
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
In [57]: outer_join.fillna(method='ffill')
Out[57]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 1.212112
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E -1.135632 -1.044236
In [58]: outer_join['value_x'].fillna(outer_join['value_x'].mean())
Out[58]:
0 0.469112
1 -0.282863
2 -1.509059
3 -1.135632
4 -1.135632
5 -0.718815
Name: value_x, dtype: float64
GroupBy
聚合(Aggregation)
SAS的PROC SUMMARY可用于按一个或多个关键变量进行分组,并计算数字列上的聚合。
proc summary data=tips nway;
class sex smoker;
var total_bill tip;
output out=tips_summed sum=;
run;
pandas提供了一种groupby
允许类似聚合的灵活机制。有关 更多详细信息和示例,请参阅groupby文档open in new window。
In [59]: tips_summed = tips.groupby(['sex', 'smoker'])['total_bill', 'tip'].sum()
In [60]: tips_summed.head()
Out[60]:
total_bill tip
sex smoker
Female No 869.68 149.77
Yes 527.27 96.74
Male No 1725.75 302.00
Yes 1217.07 183.07
转换(Transformation)
在SAS中,如果组聚合需要与原始帧一起使用,则必须将它们合并在一起。例如,减去吸烟者组每次观察的平均值。
proc summary data=tips missing nway;
class smoker;
var total_bill;
output out=smoker_means mean(total_bill)=group_bill;
run;
proc sort data=tips;
by smoker;
run;
data tips;
merge tips(in=a) smoker_means(in=b);
by smoker;
adj_total_bill = total_bill - group_bill;
if a and b;
run;
pandas groupby
提供了一种transform
机制,允许在一个操作中简洁地表达这些类型的操作。
In [61]: gb = tips.groupby('smoker')['total_bill']
In [62]: tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')
In [63]: tips.head()
Out[63]:
total_bill tip sex smoker day time size adj_total_bill
67 1.07 1.00 Female Yes Sat Dinner 1 -17.686344
92 3.75 1.00 Female Yes Fri Dinner 2 -15.006344
111 5.25 1.00 Female No Sat Dinner 1 -11.938278
145 6.35 1.50 Female No Thur Lunch 2 -10.838278
135 6.51 1.25 Female No Thur Lunch 2 -10.678278
按组处理
除了聚合之外,groupby
还可以使用pandas 通过SAS的组处理来复制大多数其他pandas 。例如,此DATA
步骤按性别/吸烟者组读取数据,并过滤到每个的第一个条目。
proc sort data=tips;
by sex smoker;
run;
data tips_first;
set tips;
by sex smoker;
if FIRST.sex or FIRST.smoker then output;
run;
在 Pandas 中,这将写成:
In [64]: tips.groupby(['sex', 'smoker']).first()
Out[64]:
total_bill tip day time size adj_total_bill
sex smoker
Female No 5.25 1.00 Sat Dinner 1 -11.938278
Yes 1.07 1.00 Sat Dinner 1 -17.686344
Male No 5.51 2.00 Thur Lunch 2 -11.678278
Yes 5.25 5.15 Sun Dinner 2 -13.506344
其他注意事项
磁盘与内存
pandas仅在内存中运行,其中SAS数据集存在于磁盘上。这意味着可以在pandas中加载的数据大小受机器内存的限制,但对数据的操作可能更快。
如果需要进行核心处理,一种可能性是 dask.dataframeopen in new window 库(目前正在开发中),它为磁盘上的pandas功能提供了一个子集DataFrame
数据互操作
pandas提供了一种read_sas()
open in new window方法,可以读取以XPORT或SAS7BDAT二进制格式保存的SAS数据。
libname xportout xport 'transport-file.xpt';
data xportout.tips;
set tips(rename=(total_bill=tbill));
* xport variable names limited to 6 characters;
run;
df = pd.read_sas('transport-file.xpt')
df = pd.read_sas('binary-file.sas7bdat')
您也可以直接指定文件格式。默认情况下,pandas将尝试根据其扩展名推断文件格式。
df = pd.read_sas('transport-file.xpt', format='xport')
df = pd.read_sas('binary-file.sas7bdat', format='sas7bdat')
XPORT是一种相对有限的格式,它的解析并不像其他一些pandas读者那样优化。在SAS和pandas之间交换数据的另一种方法是序列化为csv。
# version 0.17, 10M rows
In [8]: %time df = pd.read_sas('big.xpt')
Wall time: 14.6 s
In [9]: %time df = pd.read_csv('big.csv')
Wall time: 4.86 s
与Stata的比较
对于来自 Stataopen in new window 的潜在用户,本节旨在演示如何在 pandas 中做各种类似Stata的操作。
如果您是 pandas 的新手,您可能需要先阅读十分钟入门Pandas 以熟悉本库。
按照惯例,我们按如下方式导入 pandas 和 NumPy:
In [1]: import pandas as pd
In [2]: import numpy as np
注意
在本教程中,DataFrame
将通过调用显示 pandas df.head()
,它将显示该行的前N行(默认为5行)DataFrame
。这通常用于交互式工作(例如Jupyter笔记本open in new window或终端) - Stata中的等价物将是:
list in 1/5
数据结构
一般术语对照表
Pandas | Stata |
---|---|
DataFrame | 数据集(data set) |
column | 变量(variable) |
row | 观察(observation) |
groupby | bysort |
NaN | . |
DataFrame
/ Series
pandas 中的 DataFrame
类似于 Stata
数据集-具有不同类型的标记列的二维数据源。如本文档所示,几乎任何可以应用于Stata中的数据集的操作也可以在 pandas 中完成。
Series
是表示DataFrame的一列的数据结构。Stata 对于单个列没有单独的数据结构,但是通常,使用 Series
类似于引用Stata中的数据集的列。
Index
每个 DataFrame
和 Series
在数据 行 上都有一个叫 Index
-label 的标签。在 Stata 中没有相似的概念。在Stata中,数据集的行基本上是无标签的,除了可以用 _n
访问的隐式整数索引。
在pandas中,如果未指定索引,则默认情况下也使用整数索引(第一行= 0,第二行= 1,依此类推)。虽然使用标记Index
或 MultiIndex
可以启用复杂的分析,并且最终是 pandas 理解的重要部分,但是对于这种比较,我们基本上会忽略它, Index
并且只是将其DataFrame
视为列的集合。有关如何有效使用的更多信息, 请参阅索引文档open in new windowIndex
。
数据输入/输出
从价值观构建数据帧
通过将数据放在input
语句之后并指定列名,可以从指定值构建Stata数据集。
input x y
1 2
3 4
5 6
end
pandas 的 DataFrame
可以用许多不同的方式构建,但对于少量的值,通常可以方便地将其指定为Python字典,其中键是列名,值是数据。
In [3]: df = pd.DataFrame({'x': [1, 3, 5], 'y': [2, 4, 6]})
In [4]: df
Out[4]:
x y
0 1 2
1 3 4
2 5 6
读取外部数据
与Stata一样,pandas提供了从多种格式读取数据的实用程序。tips
在pandas测试(csvopen in new window)中找到的数据集将用于以下许多示例中。
Stata提供将csv数据读入内存中的数据集。如果文件在当前工作目录中,我们可以按如下方式导入它。import delimited````tips.csv
import delimited tips.csv
pandas 方法是read_csv()
open in new window类似的。此外,如果提供了网址,它将自动下载数据集。
In [5]: url = ('https://raw.github.com/pandas-dev'
...: '/pandas/master/pandas/tests/data/tips.csv')
...:
In [6]: tips = pd.read_csv(url)
In [7]: tips.head()
Out[7]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
比如,可以使用许多参数来指定数据应该如何解析。例如,如果数据是由制表符分隔的,没有列名,并且存在于当前工作目录中,则pandas命令将为:import delimited
read_csv()
open in new window
tips = pd.read_csv('tips.csv', sep='\t', header=None)
# alternatively, read_table is an alias to read_csv with tab delimiter
tips = pd.read_table('tips.csv', header=None)
pandas 还可以用于 .dta
的文件格式中。使用read_stata()
open in new window函数读取格式的Stata数据集。
df = pd.read_stata('data.dta')
除了text / csv和Stata文件之外,pandas还支持各种其他数据格式,如Excel,SAS,HDF5,Parquet和SQL数据库。这些都是通过pd.read_*
函数读取的。有关更多详细信息,请参阅IO文档open in new window。
导出数据
stata 中 import delimated
的反向操作是 export delimated
。
export delimited tips2.csv
类似地,在 pandas 中,read_csv
的反向操作是DataFrame.to_csv()
open in new window。
tips.to_csv('tips2.csv')
pandas 还可以使用DataFrame.to_stata()
open in new window方法导出为Stata文件格式。
tips.to_stata('tips2.dta')
数据操作
列上的操作
在Stata中,任意数学表达式可以与新列或现有列上的generate
和 replace
命令一起使用。该drop
命令从数据集中删除列。
replace total_bill = total_bill - 2
generate new_bill = total_bill / 2
drop new_bill
pandas 通过指定个体提供了类似的矢量化操作Series
中DataFrame
。可以以相同的方式分配新列。该DataFrame.drop()
open in new window方法从中删除一列DataFrame
。
In [8]: tips['total_bill'] = tips['total_bill'] - 2
In [9]: tips['new_bill'] = tips['total_bill'] / 2
In [10]: tips.head()
Out[10]:
total_bill tip sex smoker day time size new_bill
0 14.99 1.01 Female No Sun Dinner 2 7.495
1 8.34 1.66 Male No Sun Dinner 3 4.170
2 19.01 3.50 Male No Sun Dinner 3 9.505
3 21.68 3.31 Male No Sun Dinner 2 10.840
4 22.59 3.61 Female No Sun Dinner 4 11.295
In [11]: tips = tips.drop('new_bill', axis=1)
过滤
在Stata中过滤是通过 if
一个或多个列上的子句完成的。
list if total_bill > 10
DataFrame可以通过多种方式进行过滤; 最直观的是使用 布尔索引open in new window。
In [12]: tips[tips['total_bill'] > 10].head()
Out[12]:
total_bill tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
5 23.29 4.71 Male No Sun Dinner 4
如果/那么逻辑
在Stata中,if
子句也可用于创建新列。
generate bucket = "low" if total_bill < 10
replace bucket = "high" if total_bill >= 10
使用 numpy
的 where
方法可以在 pandas 中完成相同的操作。
In [13]: tips['bucket'] = np.where(tips['total_bill'] < 10, 'low', 'high')
In [14]: tips.head()
Out[14]:
total_bill tip sex smoker day time size bucket
0 14.99 1.01 Female No Sun Dinner 2 high
1 8.34 1.66 Male No Sun Dinner 3 low
2 19.01 3.50 Male No Sun Dinner 3 high
3 21.68 3.31 Male No Sun Dinner 2 high
4 22.59 3.61 Female No Sun Dinner 4 high
日期功能
Stata提供了各种函数来对date / datetime列进行操作。
generate date1 = mdy(1, 15, 2013)
generate date2 = date("Feb152015", "MDY")
generate date1_year = year(date1)
generate date2_month = month(date2)
* shift date to beginning of next month
generate date1_next = mdy(month(date1) + 1, 1, year(date1)) if month(date1) != 12
replace date1_next = mdy(1, 1, year(date1) + 1) if month(date1) == 12
generate months_between = mofd(date2) - mofd(date1)
list date1 date2 date1_year date2_month date1_next months_between
等效的 pandas 操作如下所示。除了这些功能外,pandas 还支持 Stata 中不具备的其他时间序列功能(例如时区处理和自定义偏移) - 有关详细信息,请参阅时间序列文档open in new window。
In [15]: tips['date1'] = pd.Timestamp('2013-01-15')
In [16]: tips['date2'] = pd.Timestamp('2015-02-15')
In [17]: tips['date1_year'] = tips['date1'].dt.year
In [18]: tips['date2_month'] = tips['date2'].dt.month
In [19]: tips['date1_next'] = tips['date1'] + pd.offsets.MonthBegin()
In [20]: tips['months_between'] = (tips['date2'].dt.to_period('M')
....: - tips['date1'].dt.to_period('M'))
....:
In [21]: tips[['date1', 'date2', 'date1_year', 'date2_month', 'date1_next',
....: 'months_between']].head()
....:
Out[21]:
date1 date2 date1_year date2_month date1_next months_between
0 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
1 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
2 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
3 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
4 2013-01-15 2015-02-15 2013 2 2013-02-01 <25 * MonthEnds>
列的选择
Stata 提供了选择,删除和重命名列的关键字。
keep sex total_bill tip
drop sex
rename total_bill total_bill_2
下面的 pandas 表示相同的操作。请注意,与 Stata 相比,这些操作不会发生。要使这些更改保持不变,请将操作分配回变量。
# keep
In [22]: tips[['sex', 'total_bill', 'tip']].head()
Out[22]:
sex total_bill tip
0 Female 14.99 1.01
1 Male 8.34 1.66
2 Male 19.01 3.50
3 Male 21.68 3.31
4 Female 22.59 3.61
# drop
In [23]: tips.drop('sex', axis=1).head()
Out[23]:
total_bill tip smoker day time size
0 14.99 1.01 No Sun Dinner 2
1 8.34 1.66 No Sun Dinner 3
2 19.01 3.50 No Sun Dinner 3
3 21.68 3.31 No Sun Dinner 2
4 22.59 3.61 No Sun Dinner 4
# rename
In [24]: tips.rename(columns={'total_bill': 'total_bill_2'}).head()
Out[24]:
total_bill_2 tip sex smoker day time size
0 14.99 1.01 Female No Sun Dinner 2
1 8.34 1.66 Male No Sun Dinner 3
2 19.01 3.50 Male No Sun Dinner 3
3 21.68 3.31 Male No Sun Dinner 2
4 22.59 3.61 Female No Sun Dinner 4
按值排序
Stata中的排序是通过 sort
sort sex total_bill
pandas 对象有一个DataFrame.sort_values()
open in new window方法,它采用列表进行排序。
In [25]: tips = tips.sort_values(['sex', 'total_bill'])
In [26]: tips.head()
Out[26]:
total_bill tip sex smoker day time size
67 1.07 1.00 Female Yes Sat Dinner 1
92 3.75 1.00 Female Yes Fri Dinner 2
111 5.25 1.00 Female No Sat Dinner 1
145 6.35 1.50 Female No Thur Lunch 2
135 6.51 1.25 Female No Thur Lunch 2
字符串处理
查找字符串的长度
Stata 分别使用ASCII和Unicode字符串 strlen()
和 ustrlen()
函数确定字符串的长度。
generate strlen_time = strlen(time)
generate ustrlen_time = ustrlen(time)
Python 使用该 len
函数确定字符串的长度。在Python 3中,所有字符串都是Unicode字符串。len
包括尾随空白。使用len
和rstrip
排除尾随空格。
In [27]: tips['time'].str.len().head()
Out[27]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64
In [28]: tips['time'].str.rstrip().str.len().head()
Out[28]:
67 6
92 6
111 6
145 5
135 5
Name: time, dtype: int64
找到字符串的位置
Stata使用该strpos()
函数确定字符串中字符的位置。这将获取第一个参数定义的字符串,并搜索您提供的子字符串的第一个位置作为第二个参数。
generate str_position = strpos(sex, "ale")
Python使用find()
函数确定字符串中字符的位置。find
搜索子字符串的第一个位置。如果找到子字符串,则该函数返回其位置。请记住,Python索引是从零开始的,如果找不到子串,函数将返回-1。
In [29]: tips['sex'].str.find("ale").head()
Out[29]:
67 3
92 3
111 3
145 3
135 3
Name: sex, dtype: int64
按位置提取字符串
Stata根据substr()
函数的位置从字符串中提取字符串。
generate short_sex = substr(sex, 1, 1)
使用pandas,您可以使用[]
符号从位置位置提取字符串中的子字符串。请记住,Python索引是从零开始的。
In [30]: tips['sex'].str[0:1].head()
Out[30]:
67 F
92 F
111 F
145 F
135 F
Name: sex, dtype: object
提取第n个字符
Stata word()
函数返回字符串中的第n个单词。第一个参数是要解析的字符串,第二个参数指定要提取的字。
clear
input str20 string
"John Smith"
"Jane Cook"
end
generate first_name = word(name, 1)
generate last_name = word(name, -1)
Python使用正则表达式根据文本从字符串中提取字符串。有更强大的方法,但这只是一个简单的方法。
In [31]: firstlast = pd.DataFrame({'string': ['John Smith', 'Jane Cook']})
In [32]: firstlast['First_Name'] = firstlast['string'].str.split(" ", expand=True)[0]
In [33]: firstlast['Last_Name'] = firstlast['string'].str.rsplit(" ", expand=True)[0]
In [34]: firstlast
Out[34]:
string First_Name Last_Name
0 John Smith John John
1 Jane Cook Jane Jane
改变案例
所述的Stata strupper()
,strlower()
,strproper()
, ustrupper()
,ustrlower()
,和ustrtitle()
功能分别改变ASCII和Unicode字符串的情况下,。
clear
input str20 string
"John Smith"
"Jane Cook"
end
generate upper = strupper(string)
generate lower = strlower(string)
generate title = strproper(string)
list
等效Python的功能upper
,lower
和title
。
In [35]: firstlast = pd.DataFrame({'string': ['John Smith', 'Jane Cook']})
In [36]: firstlast['upper'] = firstlast['string'].str.upper()
In [37]: firstlast['lower'] = firstlast['string'].str.lower()
In [38]: firstlast['title'] = firstlast['string'].str.title()
In [39]: firstlast
Out[39]:
string upper lower title
0 John Smith JOHN SMITH john smith John Smith
1 Jane Cook JANE COOK jane cook Jane Cook
合并
合并示例中将使用以下表格
In [40]: df1 = pd.DataFrame({'key': ['A', 'B', 'C', 'D'],
....: 'value': np.random.randn(4)})
....:
In [41]: df1
Out[41]:
key value
0 A 0.469112
1 B -0.282863
2 C -1.509059
3 D -1.135632
In [42]: df2 = pd.DataFrame({'key': ['B', 'D', 'D', 'E'],
....: 'value': np.random.randn(4)})
....:
In [43]: df2
Out[43]:
key value
0 B 1.212112
1 D -0.173215
2 D 0.119209
3 E -1.044236
在Stata中,要执行合并,一个数据集必须在内存中,另一个必须作为磁盘上的文件名引用。相比之下,Python必须DataFrames
已经在内存中。
默认情况下,Stata执行外部联接,其中两个数据集的所有观察值在合并后都保留在内存中。通过使用在_merge
变量中创建的值,可以仅保留来自初始数据集,合并数据集或两者的交集的观察 。
* First create df2 and save to disk
clear
input str1 key
B
D
D
E
end
generate value = rnormal()
save df2.dta
* Now create df1 in memory
clear
input str1 key
A
B
C
D
end
generate value = rnormal()
preserve
* Left join
merge 1:n key using df2.dta
keep if _merge == 1
* Right join
restore, preserve
merge 1:n key using df2.dta
keep if _merge == 2
* Inner join
restore, preserve
merge 1:n key using df2.dta
keep if _merge == 3
* Outer join
restore
merge 1:n key using df2.dta
pandas 的 DataFrames 有一个DataFrame.merge()
open in new window提供类似功能的方法。请注意,通过how
关键字可以实现不同的连接类型。
In [44]: inner_join = df1.merge(df2, on=['key'], how='inner')
In [45]: inner_join
Out[45]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
In [46]: left_join = df1.merge(df2, on=['key'], how='left')
In [47]: left_join
Out[47]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
In [48]: right_join = df1.merge(df2, on=['key'], how='right')
In [49]: right_join
Out[49]:
key value_x value_y
0 B -0.282863 1.212112
1 D -1.135632 -0.173215
2 D -1.135632 0.119209
3 E NaN -1.044236
In [50]: outer_join = df1.merge(df2, on=['key'], how='outer')
In [51]: outer_join
Out[51]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
缺少数据
像Stata一样,pandas 有缺失数据的表示 - 特殊浮点值NaN
(不是数字)。许多语义都是一样的; 例如,丢失的数据通过数字操作传播,默认情况下会被聚合忽略。
In [52]: outer_join
Out[52]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E NaN -1.044236
In [53]: outer_join['value_x'] + outer_join['value_y']
Out[53]:
0 NaN
1 0.929249
2 NaN
3 -1.308847
4 -1.016424
5 NaN
dtype: float64
In [54]: outer_join['value_x'].sum()
Out[54]: -3.5940742896293765
一个区别是丢失的数据无法与其哨兵值进行比较。例如,在 Stata 中,您可以执行此操作以过滤缺失值。
* Keep missing values
list if value_x == .
* Keep non-missing values
list if value_x != .
这在 pandas 中不起作用。相反,应使用pd.isna()
或pd.notna()
函数进行比较。
In [55]: outer_join[pd.isna(outer_join['value_x'])]
Out[55]:
key value_x value_y
5 E NaN -1.044236
In [56]: outer_join[pd.notna(outer_join['value_x'])]
Out[56]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 NaN
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
pandas 还提供了多种处理丢失数据的方法,其中一些方法在Stata中表达起来很有挑战性。例如,有一些方法可以删除具有任何缺失值的所有行,用指定值(如平均值)替换缺失值,或从前一行向前填充。有关详细信息,请参阅缺失数据文档open in new window。
# Drop rows with any missing value
In [57]: outer_join.dropna()
Out[57]:
key value_x value_y
1 B -0.282863 1.212112
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
# Fill forwards
In [58]: outer_join.fillna(method='ffill')
Out[58]:
key value_x value_y
0 A 0.469112 NaN
1 B -0.282863 1.212112
2 C -1.509059 1.212112
3 D -1.135632 -0.173215
4 D -1.135632 0.119209
5 E -1.135632 -1.044236
# Impute missing values with the mean
In [59]: outer_join['value_x'].fillna(outer_join['value_x'].mean())
Out[59]:
0 0.469112
1 -0.282863
2 -1.509059
3 -1.135632
4 -1.135632
5 -0.718815
Name: value_x, dtype: float64
的GroupBy
聚合
Stata collapse
可用于按一个或多个关键变量进行分组,并计算数字列上的聚合。
collapse (sum) total_bill tip, by(sex smoker)
pandas提供了一种groupby
允许类似聚合的灵活机制。有关 更多详细信息和示例,请参阅groupby文档open in new window。
In [60]: tips_summed = tips.groupby(['sex', 'smoker'])['total_bill', 'tip'].sum()
In [61]: tips_summed.head()
Out[61]:
total_bill tip
sex smoker
Female No 869.68 149.77
Yes 527.27 96.74
Male No 1725.75 302.00
Yes 1217.07 183.07
转换
在Stata中,如果组聚合需要与原始数据集一起使用bysort
,通常会使用egen()
。例如,减去吸烟者组每次观察的平均值。
bysort sex smoker: egen group_bill = mean(total_bill)
generate adj_total_bill = total_bill - group_bill
pandas groupby
提供了一种transform
机制,允许在一个操作中简洁地表达这些类型的操作。
In [62]: gb = tips.groupby('smoker')['total_bill']
In [63]: tips['adj_total_bill'] = tips['total_bill'] - gb.transform('mean')
In [64]: tips.head()
Out[64]:
total_bill tip sex smoker day time size adj_total_bill
67 1.07 1.00 Female Yes Sat Dinner 1 -17.686344
92 3.75 1.00 Female Yes Fri Dinner 2 -15.006344
111 5.25 1.00 Female No Sat Dinner 1 -11.938278
145 6.35 1.50 Female No Thur Lunch 2 -10.838278
135 6.51 1.25 Female No Thur Lunch 2 -10.678278
按组处理
除聚合外,pandas groupby
还可用于复制bysort
Stata中的大多数其他处理。例如,以下示例按性别/吸烟者组列出当前排序顺序中的第一个观察结果。
bysort sex smoker: list if _n == 1
在 pandas 中,这将写成:
In [65]: tips.groupby(['sex', 'smoker']).first()
Out[65]:
total_bill tip day time size adj_total_bill
sex smoker
Female No 5.25 1.00 Sat Dinner 1 -11.938278
Yes 1.07 1.00 Sat Dinner 1 -17.686344
Male No 5.51 2.00 Thur Lunch 2 -11.678278
Yes 5.25 5.15 Sun Dinner 2 -13.506344
其他注意事项
磁盘与内存
pandas 和 Stata 都只在内存中运行。这意味着能够在 pandas 中加载的数据大小受机器内存的限制。如果需要进行核心处理,则有一种可能性是dask.dataframeopen in new window 库,它为磁盘上的pandas功能提供了一个子集DataFrame
。
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论