返回介绍

solution / 1700-1799 / 1761.Minimum Degree of a Connected Trio in a Graph / README

发布于 2024-06-17 01:03:14 字数 5683 浏览 0 评论 0 收藏 0

1761. 一个图中连通三元组的最小度数

English Version

题目描述

给你一个无向图,整数 n 表示图中节点的数目,edges 数组表示图中的边,其中 edges[i] = [ui, vi] ,表示 ui 和 vi 之间有一条无向边。

一个 连通三元组 指的是 三个 节点组成的集合且这三个点之间 两两 有边。

连通三元组的度数 是所有满足此条件的边的数目:一个顶点在这个三元组内,而另一个顶点不在这个三元组内。

请你返回所有连通三元组中度数的 最小值 ,如果图中没有连通三元组,那么返回 -1 。

 

示例 1:

输入:n = 6, edges = [[1,2],[1,3],[3,2],[4,1],[5,2],[3,6]]
输出:3
解释:只有一个三元组 [1,2,3] 。构成度数的边在上图中已被加粗。

示例 2:

输入:n = 7, edges = [[1,3],[4,1],[4,3],[2,5],[5,6],[6,7],[7,5],[2,6]]
输出:0
解释:有 3 个三元组:
1) [1,4,3],度数为 0 。
2) [2,5,6],度数为 2 。
3) [5,6,7],度数为 2 。

 

提示:

  • 2 <= n <= 400
  • edges[i].length == 2
  • 1 <= edges.length <= n * (n-1) / 2
  • 1 <= ui, vi <= n
  • ui != vi
  • 图中没有重复的边。

解法

方法一:暴力枚举

我们先将所有边存入邻接矩阵 $g$ 中,再将每个节点的度数存入数组 $deg$ 中。初始化答案 $ans=+\infty$。

然后枚举所有的三元组 $(i, j, k)$,其中 $i \lt j \lt k$,如果 $g[i][j] = g[j][k] = g[i][k] = 1$,则说明这三个节点构成了一个连通三元组,此时更新答案为 $ans = \min(ans, deg[i] + deg[j] + deg[k] - 6)$。

枚举完所有的三元组后,如果答案仍然为 $+\infty$,说明图中不存在连通三元组,返回 $-1$,否则返回答案。

时间复杂度 $O(n^3)$,空间复杂度 $O(n^2)$。其中 $n$ 为节点数。

class Solution:
  def minTrioDegree(self, n: int, edges: List[List[int]]) -> int:
    g = [[False] * n for _ in range(n)]
    deg = [0] * n
    for u, v in edges:
      u, v = u - 1, v - 1
      g[u][v] = g[v][u] = True
      deg[u] += 1
      deg[v] += 1
    ans = inf
    for i in range(n):
      for j in range(i + 1, n):
        if g[i][j]:
          for k in range(j + 1, n):
            if g[i][k] and g[j][k]:
              ans = min(ans, deg[i] + deg[j] + deg[k] - 6)
    return -1 if ans == inf else ans
class Solution {
  public int minTrioDegree(int n, int[][] edges) {
    boolean[][] g = new boolean[n][n];
    int[] deg = new int[n];
    for (var e : edges) {
      int u = e[0] - 1, v = e[1] - 1;
      g[u][v] = true;
      g[v][u] = true;
      ++deg[u];
      ++deg[v];
    }
    int ans = 1 << 30;
    for (int i = 0; i < n; ++i) {
      for (int j = i + 1; j < n; ++j) {
        if (g[i][j]) {
          for (int k = j + 1; k < n; ++k) {
            if (g[i][k] && g[j][k]) {
              ans = Math.min(ans, deg[i] + deg[j] + deg[k] - 6);
            }
          }
        }
      }
    }
    return ans == 1 << 30 ? -1 : ans;
  }
}
class Solution {
public:
  int minTrioDegree(int n, vector<vector<int>>& edges) {
    bool g[n][n];
    memset(g, 0, sizeof g);
    int deg[n];
    memset(deg, 0, sizeof deg);
    for (auto& e : edges) {
      int u = e[0] - 1, v = e[1] - 1;
      g[u][v] = g[v][u] = true;
      deg[u]++, deg[v]++;
    }
    int ans = INT_MAX;
    for (int i = 0; i < n; ++i) {
      for (int j = i + 1; j < n; ++j) {
        if (g[i][j]) {
          for (int k = j + 1; k < n; ++k) {
            if (g[j][k] && g[i][k]) {
              ans = min(ans, deg[i] + deg[j] + deg[k] - 6);
            }
          }
        }
      }
    }
    return ans == INT_MAX ? -1 : ans;
  }
};
func minTrioDegree(n int, edges [][]int) int {
  g := make([][]bool, n)
  deg := make([]int, n)
  for i := range g {
    g[i] = make([]bool, n)
  }
  for _, e := range edges {
    u, v := e[0]-1, e[1]-1
    g[u][v], g[v][u] = true, true
    deg[u]++
    deg[v]++
  }
  ans := 1 << 30
  for i := 0; i < n; i++ {
    for j := i + 1; j < n; j++ {
      if g[i][j] {
        for k := j + 1; k < n; k++ {
          if g[i][k] && g[j][k] {
            ans = min(ans, deg[i]+deg[j]+deg[k]-6)
          }
        }
      }
    }
  }
  if ans == 1<<30 {
    return -1
  }
  return ans
}
function minTrioDegree(n: number, edges: number[][]): number {
  const g = Array.from({ length: n }, () => Array(n).fill(false));
  const deg: number[] = Array(n).fill(0);
  for (let [u, v] of edges) {
    u--;
    v--;
    g[u][v] = g[v][u] = true;
    ++deg[u];
    ++deg[v];
  }
  let ans = Infinity;
  for (let i = 0; i < n; ++i) {
    for (let j = i + 1; j < n; ++j) {
      if (g[i][j]) {
        for (let k = j + 1; k < n; ++k) {
          if (g[i][k] && g[j][k]) {
            ans = Math.min(ans, deg[i] + deg[j] + deg[k] - 6);
          }
        }
      }
    }
  }
  return ans === Infinity ? -1 : ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文