返回介绍

solution / 1700-1799 / 1724.Checking Existence of Edge Length Limited Paths II / README_EN

发布于 2024-06-17 01:03:15 字数 10662 浏览 0 评论 0 收藏 0

1724. Checking Existence of Edge Length Limited Paths II

中文文档

Description

An undirected graph of n nodes is defined by edgeList, where edgeList[i] = [ui, vi, disi] denotes an edge between nodes ui and vi with distance disi. Note that there may be multiple edges between two nodes, and the graph may not be connected.

Implement the DistanceLimitedPathsExist class:

  • DistanceLimitedPathsExist(int n, int[][] edgeList) Initializes the class with an undirected graph.
  • boolean query(int p, int q, int limit) Returns true if there exists a path from p to q such that each edge on the path has a distance strictly less than limit, and otherwise false.

 

Example 1:

Input
["DistanceLimitedPathsExist", "query", "query", "query", "query"]
[[6, [[0, 2, 4], [0, 3, 2], [1, 2, 3], [2, 3, 1], [4, 5, 5]]], [2, 3, 2], [1, 3, 3], [2, 0, 3], [0, 5, 6]]
Output
[null, true, false, true, false]

Explanation
DistanceLimitedPathsExist distanceLimitedPathsExist = new DistanceLimitedPathsExist(6, [[0, 2, 4], [0, 3, 2], [1, 2, 3], [2, 3, 1], [4, 5, 5]]);
distanceLimitedPathsExist.query(2, 3, 2); // return true. There is an edge from 2 to 3 of distance 1, which is less than 2.
distanceLimitedPathsExist.query(1, 3, 3); // return false. There is no way to go from 1 to 3 with distances strictly less than 3.
distanceLimitedPathsExist.query(2, 0, 3); // return true. There is a way to go from 2 to 0 with distance < 3: travel from 2 to 3 to 0.
distanceLimitedPathsExist.query(0, 5, 6); // return false. There are no paths from 0 to 5.

 

Constraints:

  • 2 <= n <= 104
  • 0 <= edgeList.length <= 104
  • edgeList[i].length == 3
  • 0 <= ui, vi, p, q <= n-1
  • ui != vi
  • p != q
  • 1 <= disi, limit <= 109
  • At most 104 calls will be made to query.

Solutions

Solution 1

class PersistentUnionFind:
  def __init__(self, n):
    self.rank = [0] * n
    self.p = list(range(n))
    self.version = [inf] * n

  def find(self, x, t=inf):
    if self.p[x] == x or self.version[x] >= t:
      return x
    return self.find(self.p[x], t)

  def union(self, a, b, t):
    pa, pb = self.find(a), self.find(b)
    if pa == pb:
      return False
    if self.rank[pa] > self.rank[pb]:
      self.version[pb] = t
      self.p[pb] = pa
    else:
      self.version[pa] = t
      self.p[pa] = pb
      if self.rank[pa] == self.rank[pb]:
        self.rank[pb] += 1
    return True


class DistanceLimitedPathsExist:
  def __init__(self, n: int, edgeList: List[List[int]]):
    self.puf = PersistentUnionFind(n)
    edgeList.sort(key=lambda x: x[2])
    for u, v, dis in edgeList:
      self.puf.union(u, v, dis)

  def query(self, p: int, q: int, limit: int) -> bool:
    return self.puf.find(p, limit) == self.puf.find(q, limit)
class PersistentUnionFind {
  private final int inf = 1 << 30;
  private int[] rank;
  private int[] parent;
  private int[] version;

  public PersistentUnionFind(int n) {
    rank = new int[n];
    parent = new int[n];
    version = new int[n];
    for (int i = 0; i < n; i++) {
      parent[i] = i;
      version[i] = inf;
    }
  }

  public int find(int x, int t) {
    if (parent[x] == x || version[x] >= t) {
      return x;
    }
    return find(parent[x], t);
  }

  public boolean union(int a, int b, int t) {
    int pa = find(a, inf);
    int pb = find(b, inf);
    if (pa == pb) {
      return false;
    }
    if (rank[pa] > rank[pb]) {
      version[pb] = t;
      parent[pb] = pa;
    } else {
      version[pa] = t;
      parent[pa] = pb;
      if (rank[pa] == rank[pb]) {
        rank[pb]++;
      }
    }
    return true;
  }
}

public class DistanceLimitedPathsExist {
  private PersistentUnionFind puf;

  public DistanceLimitedPathsExist(int n, int[][] edgeList) {
    puf = new PersistentUnionFind(n);
    Arrays.sort(edgeList, (a, b) -> a[2] - b[2]);
    for (var e : edgeList) {
      puf.union(e[0], e[1], e[2]);
    }
  }

  public boolean query(int p, int q, int limit) {
    return puf.find(p, limit) == puf.find(q, limit);
  }
}

/**
 * Your DistanceLimitedPathsExist object will be instantiated and called as such:
 * DistanceLimitedPathsExist obj = new DistanceLimitedPathsExist(n, edgeList);
 * boolean param_1 = obj.query(p,q,limit);
 */
class PersistentUnionFind {
private:
  vector<int> rank;
  vector<int> parent;
  vector<int> version;

public:
  PersistentUnionFind(int n)
    : rank(n, 0)
    , parent(n)
    , version(n, INT_MAX) {
    for (int i = 0; i < n; i++) {
      parent[i] = i;
    }
  }

  int find(int x, int t) {
    if (parent[x] == x || version[x] >= t) {
      return x;
    }
    return find(parent[x], t);
  }

  bool unionSet(int a, int b, int t) {
    int pa = find(a, INT_MAX);
    int pb = find(b, INT_MAX);
    if (pa == pb) {
      return false;
    }
    if (rank[pa] > rank[pb]) {
      version[pb] = t;
      parent[pb] = pa;
    } else {
      version[pa] = t;
      parent[pa] = pb;
      if (rank[pa] == rank[pb]) {
        rank[pb]++;
      }
    }
    return true;
  }
};

class DistanceLimitedPathsExist {
private:
  PersistentUnionFind puf;

public:
  DistanceLimitedPathsExist(int n, vector<vector<int>>& edgeList)
    : puf(n) {
    sort(edgeList.begin(), edgeList.end(),
      [](const vector<int>& a, const vector<int>& b) {
        return a[2] < b[2];
      });

    for (const auto& edge : edgeList) {
      puf.unionSet(edge[0], edge[1], edge[2]);
    }
  }

  bool query(int p, int q, int limit) {
    return puf.find(p, limit) == puf.find(q, limit);
  }
};

/**
 * Your DistanceLimitedPathsExist object will be instantiated and called as such:
 * DistanceLimitedPathsExist* obj = new DistanceLimitedPathsExist(n, edgeList);
 * bool param_1 = obj->query(p,q,limit);
 */
type PersistentUnionFind struct {
  rank  []int
  parent  []int
  version []int
}

func NewPersistentUnionFind(n int) *PersistentUnionFind {
  rank := make([]int, n)
  parent := make([]int, n)
  version := make([]int, n)

  for i := 0; i < n; i++ {
    parent[i] = i
  }

  return &PersistentUnionFind{
    rank:  rank,
    parent:  parent,
    version: version,
  }
}

func (uf *PersistentUnionFind) find(x int, t int) int {
  if uf.parent[x] == x || uf.version[x] >= t {
    return x
  }
  return uf.find(uf.parent[x], t)
}

func (uf *PersistentUnionFind) union(a, b, t int) bool {
  pa := uf.find(a, int(^uint(0)>>1))
  pb := uf.find(b, int(^uint(0)>>1))

  if pa == pb {
    return false
  }

  if uf.rank[pa] > uf.rank[pb] {
    uf.version[pb] = t
    uf.parent[pb] = pa
  } else {
    uf.version[pa] = t
    uf.parent[pa] = pb
    if uf.rank[pa] == uf.rank[pb] {
      uf.rank[pb]++
    }
  }

  return true
}

type DistanceLimitedPathsExist struct {
  puf *PersistentUnionFind
}

func Constructor(n int, edgeList [][]int) DistanceLimitedPathsExist {
  sort.Slice(edgeList, func(i, j int) bool {
    return edgeList[i][2] < edgeList[j][2]
  })

  puf := NewPersistentUnionFind(n)

  for _, edge := range edgeList {
    puf.union(edge[0], edge[1], edge[2])
  }

  return DistanceLimitedPathsExist{
    puf: puf,
  }
}

func (dle *DistanceLimitedPathsExist) Query(p, q, limit int) bool {
  return dle.puf.find(p, limit) == dle.puf.find(q, limit)
}

/**
 * Your DistanceLimitedPathsExist object will be instantiated and called as such:
 * obj := Constructor(n, edgeList);
 * param_1 := obj.Query(p,q,limit);
 */
class PersistentUnionFind {
  private rank: number[];
  private parent: number[];
  private version: number[];

  constructor(n: number) {
    this.rank = Array(n).fill(0);
    this.parent = Array.from({ length: n }, (_, i) => i);
    this.version = Array(n).fill(Infinity);
  }

  find(x: number, t: number): number {
    if (this.parent[x] === x || this.version[x] >= t) {
      return x;
    }
    return this.find(this.parent[x], t);
  }

  union(a: number, b: number, t: number): boolean {
    const pa = this.find(a, Infinity);
    const pb = this.find(b, Infinity);

    if (pa === pb) {
      return false;
    }

    if (this.rank[pa] > this.rank[pb]) {
      this.version[pb] = t;
      this.parent[pb] = pa;
    } else {
      this.version[pa] = t;
      this.parent[pa] = pb;
      if (this.rank[pa] === this.rank[pb]) {
        this.rank[pb]++;
      }
    }

    return true;
  }
}

class DistanceLimitedPathsExist {
  private puf: PersistentUnionFind;

  constructor(n: number, edgeList: number[][]) {
    this.puf = new PersistentUnionFind(n);
    edgeList.sort((a, b) => a[2] - b[2]);
    for (const [u, v, dis] of edgeList) {
      this.puf.union(u, v, dis);
    }
  }

  query(p: number, q: number, limit: number): boolean {
    return this.puf.find(p, limit) === this.puf.find(q, limit);
  }
}

/**
 * Your DistanceLimitedPathsExist object will be instantiated and called as such:
 * var obj = new DistanceLimitedPathsExist(n, edgeList)
 * var param_1 = obj.query(p,q,limit)
 */

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文