返回介绍

solution / 1000-1099 / 1007.Minimum Domino Rotations For Equal Row / README_EN

发布于 2024-06-17 01:03:32 字数 5902 浏览 0 评论 0 收藏 0

1007. Minimum Domino Rotations For Equal Row

中文文档

Description

In a row of dominoes, tops[i] and bottoms[i] represent the top and bottom halves of the ith domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

We may rotate the ith domino, so that tops[i] and bottoms[i] swap values.

Return the minimum number of rotations so that all the values in tops are the same, or all the values in bottoms are the same.

If it cannot be done, return -1.

 

Example 1:

Input: tops = [2,1,2,4,2,2], bottoms = [5,2,6,2,3,2]
Output: 2
Explanation: 
The first figure represents the dominoes as given by tops and bottoms: before we do any rotations.
If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.

Example 2:

Input: tops = [3,5,1,2,3], bottoms = [3,6,3,3,4]
Output: -1
Explanation: 
In this case, it is not possible to rotate the dominoes to make one row of values equal.

 

Constraints:

  • 2 <= tops.length <= 2 * 104
  • bottoms.length == tops.length
  • 1 <= tops[i], bottoms[i] <= 6

Solutions

Solution 1: Greedy

According to the problem description, we know that in order to make all values in $tops$ or all values in $bottoms$ the same, the value must be one of $tops[0]$ or $bottoms[0]$.

Therefore, we design a function $f(x)$ to represent the minimum number of rotations required to make all values equal to $x$. Then the answer is $\min{f(\textit{tops}[0]), f(\textit{bottoms}[0])}$.

The calculation method of function $f(x)$ is as follows:

We use two variables $cnt1$ and $cnt2$ to count the number of occurrences of $x$ in $tops$ and $bottoms$, respectively. We subtract the maximum value of $cnt1$ and $cnt2$ from $n$, which is the minimum number of rotations required to make all values equal to $x$. Note that if there are no values equal to $x$ in $tops$ and $bottoms$, the value of $f(x)$ is a very large number, which we represent as $n+1$.

The time complexity is $O(n)$, where $n$ is the length of the array. The space complexity is $O(1)$.

class Solution:
  def minDominoRotations(self, tops: List[int], bottoms: List[int]) -> int:
    def f(x: int) -> int:
      cnt1 = cnt2 = 0
      for a, b in zip(tops, bottoms):
        if x not in (a, b):
          return inf
        cnt1 += a == x
        cnt2 += b == x
      return len(tops) - max(cnt1, cnt2)

    ans = min(f(tops[0]), f(bottoms[0]))
    return -1 if ans == inf else ans
class Solution {
  private int n;
  private int[] tops;
  private int[] bottoms;

  public int minDominoRotations(int[] tops, int[] bottoms) {
    n = tops.length;
    this.tops = tops;
    this.bottoms = bottoms;
    int ans = Math.min(f(tops[0]), f(bottoms[0]));
    return ans > n ? -1 : ans;
  }

  private int f(int x) {
    int cnt1 = 0, cnt2 = 0;
    for (int i = 0; i < n; ++i) {
      if (tops[i] != x && bottoms[i] != x) {
        return n + 1;
      }
      cnt1 += tops[i] == x ? 1 : 0;
      cnt2 += bottoms[i] == x ? 1 : 0;
    }
    return n - Math.max(cnt1, cnt2);
  }
}
class Solution {
public:
  int minDominoRotations(vector<int>& tops, vector<int>& bottoms) {
    int n = tops.size();
    auto f = [&](int x) {
      int cnt1 = 0, cnt2 = 0;
      for (int i = 0; i < n; ++i) {
        if (tops[i] != x && bottoms[i] != x) {
          return n + 1;
        }
        cnt1 += tops[i] == x;
        cnt2 += bottoms[i] == x;
      }
      return n - max(cnt1, cnt2);
    };
    int ans = min(f(tops[0]), f(bottoms[0]));
    return ans > n ? -1 : ans;
  }
};
func minDominoRotations(tops []int, bottoms []int) int {
  n := len(tops)
  f := func(x int) int {
    cnt1, cnt2 := 0, 0
    for i, a := range tops {
      b := bottoms[i]
      if a != x && b != x {
        return n + 1
      }
      if a == x {
        cnt1++
      }
      if b == x {
        cnt2++
      }
    }
    return n - max(cnt1, cnt2)
  }
  ans := min(f(tops[0]), f(bottoms[0]))
  if ans > n {
    return -1
  }
  return ans
}
function minDominoRotations(tops: number[], bottoms: number[]): number {
  const n = tops.length;
  const f = (x: number): number => {
    let [cnt1, cnt2] = [0, 0];
    for (let i = 0; i < n; ++i) {
      if (tops[i] !== x && bottoms[i] !== x) {
        return n + 1;
      }
      cnt1 += tops[i] === x ? 1 : 0;
      cnt2 += bottoms[i] === x ? 1 : 0;
    }
    return n - Math.max(cnt1, cnt2);
  };
  const ans = Math.min(f(tops[0]), f(bottoms[0]));
  return ans > n ? -1 : ans;
}

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文