返回介绍

solution / 0600-0699 / 0612.Shortest Distance in a Plane / README_EN

发布于 2024-06-17 01:03:36 字数 1957 浏览 0 评论 0 收藏 0

612. Shortest Distance in a Plane

中文文档

Description

Table: Point2D

+-------------+------+
| Column Name | Type |
+-------------+------+
| x       | int  |
| y       | int  |
+-------------+------+
(x, y) is the primary key column (combination of columns with unique values) for this table.
Each row of this table indicates the position of a point on the X-Y plane.

 

The distance between two points p1(x1, y1) and p2(x2, y2) is sqrt((x2 - x1)2 + (y2 - y1)2).

Write a solution to report the shortest distance between any two points from the Point2D table. Round the distance to two decimal points.

The result format is in the following example.

 

Example 1:

Input: 
Point2D table:
+----+----+
| x  | y  |
+----+----+
| -1 | -1 |
| 0  | 0  |
| -1 | -2 |
+----+----+
Output: 
+----------+
| shortest |
+----------+
| 1.00   |
+----------+
Explanation: The shortest distance is 1.00 from point (-1, -1) to (-1, 2).

Solutions

Solution 1

# Write your MySQL query statement below
SELECT ROUND(SQRT(POW(p1.x - p2.x, 2) + POW(p1.y - p2.y, 2)), 2) AS shortest
FROM
  Point2D AS p1
  JOIN Point2D AS p2 ON p1.x != p2.x OR p1.y != p2.y
ORDER BY 1
LIMIT 1;

如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。

扫码二维码加入Web技术交流群

发布评论

需要 登录 才能够评论, 你可以免费 注册 一个本站的账号。
列表为空,暂无数据
    我们使用 Cookies 和其他技术来定制您的体验包括您的登录状态等。通过阅读我们的 隐私政策 了解更多相关信息。 单击 接受 或继续使用网站,即表示您同意使用 Cookies 和您的相关数据。
    原文