01. Python 工具
02. Python 基础
03. Numpy
- Numpy 简介
- Matplotlib 基础
- Numpy 数组及其索引
- 数组类型
- 数组方法
- 数组排序
- 数组形状
- 对角线
- 数组与字符串的转换
- 数组属性方法总结
- 生成数组的函数
- 矩阵
- 一般函数
- 向量化函数
- 二元运算
- ufunc 对象
- choose 函数实现条件筛选
- 数组广播机制
- 数组读写
- 结构化数组
- 记录数组
- 内存映射
- 从 Matlab 到 Numpy
04. Scipy
05. Python 进阶
- sys 模块简介
- 与操作系统进行交互:os 模块
- CSV 文件和 csv 模块
- 正则表达式和 re 模块
- datetime 模块
- SQL 数据库
- 对象关系映射
- 函数进阶:参数传递,高阶函数,lambda 匿名函数,global 变量,递归
- 迭代器
- 生成器
- with 语句和上下文管理器
- 修饰符
- 修饰符的使用
- operator, functools, itertools, toolz, fn, funcy 模块
- 作用域
- 动态编译
06. Matplotlib
- Pyplot 教程
- 使用 style 来配置 pyplot 风格
- 处理文本(基础)
- 处理文本(数学表达式)
- 图像基础
- 注释
- 标签
- figures, subplots, axes 和 ticks 对象
- 不要迷信默认设置
- 各种绘图实例
07. 使用其他语言进行扩展
- 简介
- Python 扩展模块
- Cython:Cython 基础,将源代码转换成扩展模块
- Cython:Cython 语法,调用其他C库
- Cython:class 和 cdef class,使用 C++
- Cython:Typed memoryviews
- 生成编译注释
- ctypes
08. 面向对象编程
09. Theano 基础
- Theano 简介及其安装
- Theano 基础
- Theano 在 Windows 上的配置
- Theano 符号图结构
- Theano 配置和编译模式
- Theano 条件语句
- Theano 循环:scan(详解)
- Theano 实例:线性回归
- Theano 实例:Logistic 回归
- Theano 实例:Softmax 回归
- Theano 实例:人工神经网络
- Theano 随机数流变量
- Theano 实例:更复杂的网络
- Theano 实例:卷积神经网络
- Theano tensor 模块:基础
- Theano tensor 模块:索引
- Theano tensor 模块:操作符和逐元素操作
- Theano tensor 模块:nnet 子模块
- Theano tensor 模块:conv 子模块
10. 有趣的第三方模块
11. 有用的工具
- pprint 模块:打印 Python 对象
- pickle, cPickle 模块:序列化 Python 对象
- json 模块:处理 JSON 数据
- glob 模块:文件模式匹配
- shutil 模块:高级文件操作
- gzip, zipfile, tarfile 模块:处理压缩文件
- logging 模块:记录日志
- string 模块:字符串处理
- collections 模块:更多数据结构
- requests 模块:HTTP for Human
12. Pandas
十分钟上手 Pandas
pandas
是一个 Python Data Analysis Library
。
安装请参考官网的教程,如果安装了 Anaconda
,则不需要安装 pandas
库。
In [1]:
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
产生 Pandas 对象
pandas
中有三种基本结构:
Series
- 1D labeled homogeneously-typed array
DataFrame
- General 2D labeled, size-mutable tabular structure with potentially heterogeneously-typed columns
Panel
- General 3D labeled, also size-mutable array
Series
一维 Series
可以用一维列表初始化:
In [2]:
s = pd.Series([1,3,5,np.nan,6,8])
print s
0 1
1 3
2 5
3 NaN
4 6
5 8
dtype: float64
默认情况下,Series
的下标都是数字(可以使用额外参数指定),类型是统一的。
DataFrame
DataFrame
则是个二维结构,这里首先构造一组时间序列,作为我们第一维的下标:
In [3]:
dates = pd.date_range('20130101', periods=6)
print dates
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
然后创建一个 DataFrame
结构:
In [4]:
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
df
Out[4]:
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 |
默认情况下,如果不指定 index
参数和 columns
,那么他们的值将用从 0
开始的数字替代。
除了向 DataFrame
中传入二维数组,我们也可以使用字典传入数据:
In [5]:
df2 = pd.DataFrame({'A' : 1.,
'B' : pd.Timestamp('20130102'),
'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
'D' : np.array([3] * 4,dtype='int32'),
'E' : pd.Categorical(["test","train","test","train"]),
'F' : 'foo' })
df2
Out[5]:
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
0 | 1 | 2013-01-02 | 1 | 3 | test | foo |
1 | 1 | 2013-01-02 | 1 | 3 | train | foo |
2 | 1 | 2013-01-02 | 1 | 3 | test | foo |
3 | 1 | 2013-01-02 | 1 | 3 | train | foo |
字典的每个 key
代表一列,其 value
可以是各种能够转化为 Series
的对象。
与 Series
要求所有的类型都一致不同,DataFrame
值要求每一列数据的格式相同:
In [6]:
df2.dtypes
Out[6]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
查看数据
头尾数据
head
和 tail
方法可以分别查看最前面几行和最后面几行的数据(默认为 5):
In [7]:
df.head()
Out[7]:
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
最后 3 行:
In [8]:
df.tail(3)
Out[8]:
A | B | C | D | |
---|---|---|---|---|
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 |
下标,列标,数据
下标使用 index
属性查看:
In [9]:
df.index
Out[9]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
列标使用 columns
属性查看:
In [10]:
df.columns
Out[10]:
Index([u'A', u'B', u'C', u'D'], dtype='object')
数据值使用 values
查看:
In [11]:
df.values
Out[11]:
array([[-0.60593585, -0.86165752, -1.00192387, 1.52858443],
[-0.16540784, 0.38833783, 1.18718697, 1.81981793],
[ 0.06525454, -1.60807414, -1.2823306 , -0.28606716],
[ 1.28930486, 0.49711531, -0.22535143, 0.04023897],
[ 0.03823179, 0.87505664, -0.0925258 , 0.93443212],
[-2.16345271, -0.01027865, 1.69988608, 1.29165337]])
统计数据
查看简单的统计数据:
In [12]:
df.describe()
Out[12]:
A | B | C | D | |
---|---|---|---|---|
count | 6.000000 | 6.000000 | 6.000000 | 6.000000 |
mean | -0.257001 | -0.119917 | 0.047490 | 0.888110 |
std | 1.126657 | 0.938705 | 1.182629 | 0.841529 |
min | -2.163453 | -1.608074 | -1.282331 | -0.286067 |
25% | -0.495804 | -0.648813 | -0.807781 | 0.263787 |
50% | -0.063588 | 0.189030 | -0.158939 | 1.113043 |
75% | 0.058499 | 0.469921 | 0.867259 | 1.469352 |
max | 1.289305 | 0.875057 | 1.699886 | 1.819818 |
转置
In [13]:
df.T
Out[13]:
2013-01-01 00:00:00 | 2013-01-02 00:00:00 | 2013-01-03 00:00:00 | 2013-01-04 00:00:00 | 2013-01-05 00:00:00 | 2013-01-06 00:00:00 | |
---|---|---|---|---|---|---|
A | -0.605936 | -0.165408 | 0.065255 | 1.289305 | 0.038232 | -2.163453 |
B | -0.861658 | 0.388338 | -1.608074 | 0.497115 | 0.875057 | -0.010279 |
C | -1.001924 | 1.187187 | -1.282331 | -0.225351 | -0.092526 | 1.699886 |
D | 1.528584 | 1.819818 | -0.286067 | 0.040239 | 0.934432 | 1.291653 |
排序
sort_index(axis=0, ascending=True)
方法按照下标大小进行排序,axis=0
表示按第 0 维进行排序。
In [14]:
df.sort_index(ascending=False)
Out[14]:
A | B | C | D | |
---|---|---|---|---|
2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
In [15]:
df.sort_index(axis=1, ascending=False)
Out[15]:
D | C | B | A | |
---|---|---|---|---|
2013-01-01 | 1.528584 | -1.001924 | -0.861658 | -0.605936 |
2013-01-02 | 1.819818 | 1.187187 | 0.388338 | -0.165408 |
2013-01-03 | -0.286067 | -1.282331 | -1.608074 | 0.065255 |
2013-01-04 | 0.040239 | -0.225351 | 0.497115 | 1.289305 |
2013-01-05 | 0.934432 | -0.092526 | 0.875057 | 0.038232 |
2013-01-06 | 1.291653 | 1.699886 | -0.010279 | -2.163453 |
sort_values(by, axis=0, ascending=True)
方法按照 by
的值的大小进行排序,例如按照 B
列的大小:
In [16]:
df.sort_values(by="B")
Out[16]:
A | B | C | D | |
---|---|---|---|---|
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
索引
虽然 DataFrame
支持 Python/Numpy
的索引语法,但是推荐使用 .at, .iat, .loc, .iloc 和 .ix
方法进行索引。
读取数据
选择单列数据:
In [17]:
df["A"]
Out[17]:
2013-01-01 -0.605936
2013-01-02 -0.165408
2013-01-03 0.065255
2013-01-04 1.289305
2013-01-05 0.038232
2013-01-06 -2.163453
Freq: D, Name: A, dtype: float64
也可以用 df.A
:
In [18]:
df.A
Out[18]:
2013-01-01 -0.605936
2013-01-02 -0.165408
2013-01-03 0.065255
2013-01-04 1.289305
2013-01-05 0.038232
2013-01-06 -2.163453
Freq: D, Name: A, dtype: float64
使用切片读取多行:
In [19]:
df[0:3]
Out[19]:
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
index
名字也可以进行切片:
In [20]:
df["20130101":"20130103"]
Out[20]:
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
使用 label
索引
loc
可以方便的使用 label
进行索引:
In [21]:
df.loc[dates[0]]
Out[21]:
A -0.605936
B -0.861658
C -1.001924
D 1.528584
Name: 2013-01-01 00:00:00, dtype: float64
多列数据:
In [22]:
df.loc[:,['A','B']]
Out[22]:
A | B | |
---|---|---|
2013-01-01 | -0.605936 | -0.861658 |
2013-01-02 | -0.165408 | 0.388338 |
2013-01-03 | 0.065255 | -1.608074 |
2013-01-04 | 1.289305 | 0.497115 |
2013-01-05 | 0.038232 | 0.875057 |
2013-01-06 | -2.163453 | -0.010279 |
选择多行多列:
In [23]:
df.loc['20130102':'20130104',['A','B']]
Out[23]:
A | B | |
---|---|---|
2013-01-02 | -0.165408 | 0.388338 |
2013-01-03 | 0.065255 | -1.608074 |
2013-01-04 | 1.289305 | 0.497115 |
数据降维:
In [24]:
df.loc['20130102',['A','B']]
Out[24]:
A -0.165408
B 0.388338
Name: 2013-01-02 00:00:00, dtype: float64
得到标量值:
In [25]:
df.loc[dates[0],'B']
Out[25]:
-0.86165751902832299
不过得到标量值可以用 at
,速度更快:
In [26]:
%timeit -n100 df.loc[dates[0],'B']
%timeit -n100 df.at[dates[0],'B']
print df.at[dates[0],'B']
100 loops, best of 3: 329 µs per loop
100 loops, best of 3: 31.1 µs per loop
-0.861657519028
使用位置索引
iloc
使用位置进行索引:
In [27]:
df.iloc[3]
Out[27]:
A 1.289305
B 0.497115
C -0.225351
D 0.040239
Name: 2013-01-04 00:00:00, dtype: float64
连续切片:
In [28]:
df.iloc[3:5,0:2]
Out[28]:
A | B | |
---|---|---|
2013-01-04 | 1.289305 | 0.497115 |
2013-01-05 | 0.038232 | 0.875057 |
索引不连续的部分:
In [29]:
df.iloc[[1,2,4],[0,2]]
Out[29]:
A | C | |
---|---|---|
2013-01-02 | -0.165408 | 1.187187 |
2013-01-03 | 0.065255 | -1.282331 |
2013-01-05 | 0.038232 | -0.092526 |
索引整行:
In [30]:
df.iloc[1:3,:]
Out[30]:
A | B | C | D | |
---|---|---|---|---|
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
整列:
In [31]:
df.iloc[:, 1:3]
Out[31]:
B | C | |
---|---|---|
2013-01-01 | -0.861658 | -1.001924 |
2013-01-02 | 0.388338 | 1.187187 |
2013-01-03 | -1.608074 | -1.282331 |
2013-01-04 | 0.497115 | -0.225351 |
2013-01-05 | 0.875057 | -0.092526 |
2013-01-06 | -0.010279 | 1.699886 |
标量值:
In [32]:
df.iloc[1,1]
Out[32]:
0.3883378290420279
当然,使用 iat
索引标量值更快:
In [33]:
%timeit -n100 df.iloc[1,1]
%timeit -n100 df.iat[1,1]
df.iat[1,1]
100 loops, best of 3: 236 µs per loop
100 loops, best of 3: 14.5 µs per loop
Out[33]:
0.3883378290420279
布尔型索引
所有 A
列大于 0 的行:
In [34]:
df[df.A > 0]
Out[34]:
A | B | C | D | |
---|---|---|---|---|
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 |
只留下所有大于 0 的数值:
In [35]:
df[df > 0]
Out[35]:
A | B | C | D | |
---|---|---|---|---|
2013-01-01 | NaN | NaN | NaN | 1.528584 |
2013-01-02 | NaN | 0.388338 | 1.187187 | 1.819818 |
2013-01-03 | 0.065255 | NaN | NaN | NaN |
2013-01-04 | 1.289305 | 0.497115 | NaN | 0.040239 |
2013-01-05 | 0.038232 | 0.875057 | NaN | 0.934432 |
2013-01-06 | NaN | NaN | 1.699886 | 1.291653 |
使用 isin
方法做 filter
过滤:
In [36]:
df2 = df.copy()
df2['E'] = ['one', 'one','two','three','four','three']
df2
Out[36]:
A | B | C | D | E | |
---|---|---|---|---|---|
2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 | one |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 | one |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | two |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 | three |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | four |
2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 | three |
In [37]:
df2[df2['E'].isin(['two','four'])]
Out[37]:
A | B | C | D | E | |
---|---|---|---|---|---|
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | two |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | four |
设定数据的值
In [38]:
s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))
s1
Out[38]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64
像字典一样,直接指定 F
列的值为 s1
,此时以 df
已有的 index
为标准将二者进行合并,s1
中没有的 index
项设为 NaN
,多余的项舍去:
In [39]:
df['F'] = s1
df
Out[39]:
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | -0.605936 | -0.861658 | -1.001924 | 1.528584 | NaN |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 | 1 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | 2 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 | 3 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | 4 |
2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 | 5 |
或者使用 at
或 iat
修改单个值:
In [40]:
df.at[dates[0],'A'] = 0
df
Out[40]:
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | 0.000000 | -0.861658 | -1.001924 | 1.528584 | NaN |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 | 1 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | 2 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 | 3 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | 4 |
2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 | 5 |
In [41]:
df.iat[0, 1] = 0
df
Out[41]:
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 1.528584 | NaN |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 1.819818 | 1 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | -0.286067 | 2 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 0.040239 | 3 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 0.934432 | 4 |
2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 1.291653 | 5 |
设定一整列:
In [42]:
df.loc[:,'D'] = np.array([5] * len(df))
df
Out[42]:
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 5 | NaN |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 5 | 1 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | 5 | 2 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 5 | 3 |
2013-01-05 | 0.038232 | 0.875057 | -0.092526 | 5 | 4 |
2013-01-06 | -2.163453 | -0.010279 | 1.699886 | 5 | 5 |
设定满足条件的数值:
In [43]:
df2 = df.copy()
df2[df2 > 0] = -df2
df2
Out[43]:
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | -1.001924 | -5 | NaN |
2013-01-02 | -0.165408 | -0.388338 | -1.187187 | -5 | -1 |
2013-01-03 | -0.065255 | -1.608074 | -1.282331 | -5 | -2 |
2013-01-04 | -1.289305 | -0.497115 | -0.225351 | -5 | -3 |
2013-01-05 | -0.038232 | -0.875057 | -0.092526 | -5 | -4 |
2013-01-06 | -2.163453 | -0.010279 | -1.699886 | -5 | -5 |
缺失数据
In [44]:
df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
df1.loc[dates[0]:dates[1],'E'] = 1
df1
Out[44]:
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 5 | NaN | 1 |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 5 | 1 | 1 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | 5 | 2 | NaN |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 5 | 3 | NaN |
丢弃所有缺失数据的行得到的新数据:
In [45]:
df1.dropna(how='any')
Out[45]:
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 5 | 1 | 1 |
填充缺失数据:
In [46]:
df1.fillna(value=5)
Out[46]:
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 5 | 5 | 1 |
2013-01-02 | -0.165408 | 0.388338 | 1.187187 | 5 | 1 | 1 |
2013-01-03 | 0.065255 | -1.608074 | -1.282331 | 5 | 2 | 5 |
2013-01-04 | 1.289305 | 0.497115 | -0.225351 | 5 | 3 | 5 |
检查缺失数据的位置:
In [47]:
pd.isnull(df1)
Out[47]:
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2013-01-01 | False | False | False | False | True | False |
2013-01-02 | False | False | False | False | False | False |
2013-01-03 | False | False | False | False | False | True |
2013-01-04 | False | False | False | False | False | True |
计算操作
统计信息
每一列的均值:
In [48]:
df.mean()
Out[48]:
A -0.156012
B 0.023693
C 0.047490
D 5.000000
F 3.000000
dtype: float64
每一行的均值:
In [49]:
df.mean(1)
Out[49]:
2013-01-01 0.999519
2013-01-02 1.482023
2013-01-03 0.834970
2013-01-04 1.912214
2013-01-05 1.964153
2013-01-06 1.905231
Freq: D, dtype: float64
多个对象之间的操作,如果维度不对,pandas
会自动调用 broadcasting
机制:
In [50]:
s = pd.Series([1,3,5,np.nan,6,8], index=dates).shift(2)
print s
2013-01-01 NaN
2013-01-02 NaN
2013-01-03 1
2013-01-04 3
2013-01-05 5
2013-01-06 NaN
Freq: D, dtype: float64
相减 df - s
:
In [51]:
df.sub(s, axis='index')
Out[51]:
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | NaN | NaN | NaN | NaN | NaN |
2013-01-02 | NaN | NaN | NaN | NaN | NaN |
2013-01-03 | -0.934745 | -2.608074 | -2.282331 | 4 | 1 |
2013-01-04 | -1.710695 | -2.502885 | -3.225351 | 2 | 0 |
2013-01-05 | -4.961768 | -4.124943 | -5.092526 | 0 | -1 |
2013-01-06 | NaN | NaN | NaN | NaN | NaN |
apply 操作
与 R
中的 apply
操作类似,接收一个函数,默认是对将函数作用到每一列上:
In [52]:
df.apply(np.cumsum)
Out[52]:
A | B | C | D | F | |
---|---|---|---|---|---|
2013-01-01 | 0.000000 | 0.000000 | -1.001924 | 5 | NaN |
2013-01-02 | -0.165408 | 0.388338 | 0.185263 | 10 | 1 |
2013-01-03 | -0.100153 | -1.219736 | -1.097067 | 15 | 3 |
2013-01-04 | 1.189152 | -0.722621 | -1.322419 | 20 | 6 |
2013-01-05 | 1.227383 | 0.152436 | -1.414945 | 25 | 10 |
2013-01-06 | -0.936069 | 0.142157 | 0.284941 | 30 | 15 |
求每列最大最小值之差:
In [53]:
df.apply(lambda x: x.max() - x.min())
Out[53]:
A 3.452758
B 2.483131
C 2.982217
D 0.000000
F 4.000000
dtype: float64
直方图
In [54]:
s = pd.Series(np.random.randint(0, 7, size=10))
print s
0 2
1 5
2 6
3 6
4 6
5 3
6 5
7 0
8 4
9 4
dtype: int64
直方图信息:
In [55]:
print s.value_counts()
6 3
5 2
4 2
3 1
2 1
0 1
dtype: int64
绘制直方图信息:
In [56]:
h = s.hist()
https://www.wenjiangs.com/wp-content/uploads/2022/docimg20/aXqn3so60qyBEXro-Z6woI6.png alt="">
字符串方法
当 Series
或者 DataFrame
的某一列是字符串时,我们可以用 .str
对这个字符串数组进行字符串的基本操作:
In [57]:
s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
print s.str.lower()
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object
合并
连接
In [58]:
df = pd.DataFrame(np.random.randn(10, 4))
df
Out[58]:
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | -2.346373 | 0.105651 | -0.048027 | 0.010637 |
1 | -0.682198 | 0.943043 | 0.147312 | -0.657871 |
2 | 0.515766 | -0.768286 | 0.361570 | 1.146278 |
3 | -0.607277 | -0.003086 | -1.499001 | 1.165728 |
4 | -1.226279 | -0.177246 | -1.379631 | -0.639261 |
5 | 0.807364 | -1.855060 | 0.325968 | 1.898831 |
6 | 0.438539 | -0.728131 | -0.009924 | 0.398360 |
7 | 1.497457 | -1.506314 | -1.557624 | 0.869043 |
8 | 0.945985 | -0.519435 | -0.510359 | -1.077751 |
9 | 1.597679 | -0.285955 | -1.060736 | 0.608629 |
可以使用 pd.concat
函数将多个 pandas
对象进行连接:
In [59]:
pieces = [df[:2], df[4:5], df[7:]]
pd.concat(pieces)
Out[59]:
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | -2.346373 | 0.105651 | -0.048027 | 0.010637 |
1 | -0.682198 | 0.943043 | 0.147312 | -0.657871 |
4 | -1.226279 | -0.177246 | -1.379631 | -0.639261 |
7 | 1.497457 | -1.506314 | -1.557624 | 0.869043 |
8 | 0.945985 | -0.519435 | -0.510359 | -1.077751 |
9 | 1.597679 | -0.285955 | -1.060736 | 0.608629 |
数据库中的 Join
merge
可以实现数据库中的 join
操作:
In [60]:
left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
print left
print right
key lval
0 foo 1
1 foo 2
key rval
0 foo 4
1 foo 5
In [61]:
pd.merge(left, right, on='key')
Out[61]:
key | lval | rval | |
---|---|---|---|
0 | foo | 1 | 4 |
1 | foo | 1 | 5 |
2 | foo | 2 | 4 |
3 | foo | 2 | 5 |
append
向 DataFrame
中添加行:
In [62]:
df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
df
Out[62]:
A | B | C | D | |
---|---|---|---|---|
0 | 1.587778 | -0.110297 | 0.602245 | 1.212597 |
1 | -0.551109 | 0.337387 | -0.220919 | 0.363332 |
2 | 1.207373 | -0.128394 | 0.619937 | -0.612694 |
3 | -0.978282 | -1.038170 | 0.048995 | -0.788973 |
4 | 0.843893 | -1.079021 | 0.092212 | 0.485422 |
5 | -0.056594 | 1.831206 | 1.910864 | -1.331739 |
6 | -0.487106 | -1.495367 | 0.853440 | 0.410854 |
7 | 1.830852 | -0.014893 | 0.254025 | 0.197422 |
将第三行的值添加到最后:
In [63]:
s = df.iloc[3]
df.append(s, ignore_index=True)
Out[63]:
A | B | C | D | |
---|---|---|---|---|
0 | 1.587778 | -0.110297 | 0.602245 | 1.212597 |
1 | -0.551109 | 0.337387 | -0.220919 | 0.363332 |
2 | 1.207373 | -0.128394 | 0.619937 | -0.612694 |
3 | -0.978282 | -1.038170 | 0.048995 | -0.788973 |
4 | 0.843893 | -1.079021 | 0.092212 | 0.485422 |
5 | -0.056594 | 1.831206 | 1.910864 | -1.331739 |
6 | -0.487106 | -1.495367 | 0.853440 | 0.410854 |
7 | 1.830852 | -0.014893 | 0.254025 | 0.197422 |
8 | -0.978282 | -1.038170 | 0.048995 | -0.788973 |
Grouping
In [64]:
df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
'foo', 'bar', 'foo', 'foo'],
'B' : ['one', 'one', 'two', 'three',
'two', 'two', 'one', 'three'],
'C' : np.random.randn(8),
'D' : np.random.randn(8)})
df
Out[64]:
A | B | C | D | |
---|---|---|---|---|
0 | foo | one | 0.773062 | 0.206503 |
1 | bar | one | 1.414609 | -0.346719 |
2 | foo | two | 0.964174 | 0.706623 |
3 | bar | three | 0.182239 | -1.516509 |
4 | foo | two | -0.096255 | 0.494177 |
5 | bar | two | -0.759471 | -0.389213 |
6 | foo | one | -0.257519 | -1.411693 |
7 | foo | three | -0.109368 | 0.241862 |
按照 A
的值进行分类:
In [65]:
df.groupby('A').sum()
Out[65]:
C | D | |
---|---|---|
A | ||
--- | --- | --- |
bar | 0.837377 | -2.252441 |
foo | 1.274094 | 0.237472 |
按照 A, B
的值进行分类:
In [66]:
df.groupby(['A', 'B']).sum()
Out[66]:
C | D | ||
---|---|---|---|
A | B | ||
--- | --- | --- | --- |
bar | one | 1.414609 | -0.346719 |
three | 0.182239 | -1.516509 | |
two | -0.759471 | -0.389213 | |
foo | one | 0.515543 | -1.205191 |
three | -0.109368 | 0.241862 | |
two | 0.867919 | 1.200800 |
改变形状
Stack
产生一个多 index
的 DataFrame
:
In [67]:
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two',
'one', 'two', 'one', 'two']]))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
df
Out[67]:
A | B | ||
---|---|---|---|
first | second | ||
--- | --- | --- | --- |
bar | one | -0.109174 | 0.958551 |
two | -0.254743 | -0.975924 | |
baz | one | -0.132039 | -0.119009 |
two | 0.587063 | -0.819037 | |
foo | one | -0.754123 | 0.430747 |
two | -0.426544 | 0.389822 | |
qux | one | -0.382501 | -0.562910 |
two | -0.529287 | 0.826337 |
stack
方法将 columns
变成一个新的 index
部分:
In [68]:
df2 = df[:4]
stacked = df2.stack()
stacked
Out[68]:
first second
bar one A -0.109174
B 0.958551
two A -0.254743
B -0.975924
baz one A -0.132039
B -0.119009
two A 0.587063
B -0.819037
dtype: float64
可以使用 unstack()
将最后一级 index
放回 column
:
In [69]:
stacked.unstack()
Out[69]:
A | B | ||
---|---|---|---|
first | second | ||
--- | --- | --- | --- |
bar | one | -0.109174 | 0.958551 |
two | -0.254743 | -0.975924 | |
baz | one | -0.132039 | -0.119009 |
two | 0.587063 | -0.819037 |
也可以指定其他的级别:
In [70]:
stacked.unstack(1)
Out[70]:
second | one | two | |
---|---|---|---|
first | |||
--- | --- | --- | --- |
bar | A | -0.109174 | -0.254743 |
B | 0.958551 | -0.975924 | |
baz | A | -0.132039 | 0.587063 |
B | -0.119009 | -0.819037 |
时间序列
金融分析中常用到时间序列数据:
In [71]:
rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)
ts
Out[71]:
2012-03-06 1.096788
2012-03-07 0.029678
2012-03-08 0.511461
2012-03-09 -0.332369
2012-03-10 1.720321
Freq: D, dtype: float64
标准时间表示:
In [72]:
ts_utc = ts.tz_localize('UTC')
ts_utc
Out[72]:
2012-03-06 00:00:00+00:00 1.096788
2012-03-07 00:00:00+00:00 0.029678
2012-03-08 00:00:00+00:00 0.511461
2012-03-09 00:00:00+00:00 -0.332369
2012-03-10 00:00:00+00:00 1.720321
Freq: D, dtype: float64
In [ ]:
改变时区表示:
In [73]:
ts_utc.tz_convert('US/Eastern')
Out[73]:
2012-03-05 19:00:00-05:00 1.096788
2012-03-06 19:00:00-05:00 0.029678
2012-03-07 19:00:00-05:00 0.511461
2012-03-08 19:00:00-05:00 -0.332369
2012-03-09 19:00:00-05:00 1.720321
Freq: D, dtype: float64
Categoricals
In [74]:
df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
df
Out[74]:
id | raw_grade | |
---|---|---|
0 | 1 | a |
1 | 2 | b |
2 | 3 | b |
3 | 4 | a |
4 | 5 | a |
5 | 6 | e |
可以将 grade
变成类别:
In [75]:
df["grade"] = df["raw_grade"].astype("category")
df["grade"]
Out[75]:
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): [a, b, e]
将类别的表示转化为有意义的字符:
In [76]:
df["grade"].cat.categories = ["very good", "good", "very bad"]
df["grade"]
Out[76]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (3, object): [very good, good, very bad]
添加缺失的类别:
In [77]:
df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])
df["grade"]
Out[77]:
0 very good
1 good
2 good
3 very good
4 very good
5 very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]
使用 grade
分组:
In [78]:
df.groupby("grade").size()
Out[78]:
grade
very bad 1
bad 0
medium 0
good 2
very good 3
dtype: int64
绘图
使用 ggplot
风格:
In [79]:
plt.style.use('ggplot')
Series
绘图:
In [80]:
ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
p = ts.cumsum().plot()
https://www.wenjiangs.com/wp-content/uploads/2022/docimg20/UeJdYrKU0QZ45FeH-vC4jkl.png alt="">
DataFrame
按照 columns
绘图:
In [81]:
df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
columns=['A', 'B', 'C', 'D'])
df.cumsum().plot()
p = plt.legend(loc="best")
https://www.wenjiangs.com/wp-content/uploads/2022/docimg20/i3E0Ttf6GBShRSEV-GGNhW3.png alt="">
文件读写
csv
写入文件:
In [82]:
df.to_csv('foo.csv')
从文件中读取:
In [83]:
pd.read_csv('foo.csv').head()
Out[83]:
Unnamed: 0 | A | B | C | D | |
---|---|---|---|---|---|
0 | 2000-01-01 | -1.011554 | 1.200283 | -0.310949 | -1.060734 |
1 | 2000-01-02 | -1.030894 | 0.660518 | -0.214002 | -0.422014 |
2 | 2000-01-03 | -0.488692 | 1.709209 | -0.602208 | 1.115456 |
3 | 2000-01-04 | -0.440243 | 0.826692 | 0.321648 | -0.351698 |
4 | 2000-01-05 | -0.165684 | 1.297303 | 0.817233 | 0.174767 |
hdf5
写入文件:
In [84]:
df.to_hdf("foo.h5", "df")
读取文件:
In [85]:
pd.read_hdf('foo.h5','df').head()
Out[85]:
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | -1.011554 | 1.200283 | -0.310949 | -1.060734 |
2000-01-02 | -1.030894 | 0.660518 | -0.214002 | -0.422014 |
2000-01-03 | -0.488692 | 1.709209 | -0.602208 | 1.115456 |
2000-01-04 | -0.440243 | 0.826692 | 0.321648 | -0.351698 |
2000-01-05 | -0.165684 | 1.297303 | 0.817233 | 0.174767 |
excel
写入文件:
In [86]:
df.to_excel('foo.xlsx', sheet_name='Sheet1')
读取文件:
In [87]:
pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA']).head()
Out[87]:
A | B | C | D | |
---|---|---|---|---|
2000-01-01 | -1.011554 | 1.200283 | -0.310949 | -1.060734 |
2000-01-02 | -1.030894 | 0.660518 | -0.214002 | -0.422014 |
2000-01-03 | -0.488692 | 1.709209 | -0.602208 | 1.115456 |
2000-01-04 | -0.440243 | 0.826692 | 0.321648 | -0.351698 |
2000-01-05 | -0.165684 | 1.297303 | 0.817233 | 0.174767 |
清理生成的临时文件:
In [88]:
import glob
import os
for f in glob.glob("foo*"):
os.remove(f)
如果你对这篇内容有疑问,欢迎到本站社区发帖提问 参与讨论,获取更多帮助,或者扫码二维码加入 Web 技术交流群。
绑定邮箱获取回复消息
由于您还没有绑定你的真实邮箱,如果其他用户或者作者回复了您的评论,将不能在第一时间通知您!
发布评论